A real-valued block conjugate gradient type method for solving complex symmetric linear systems with multiple right-hand sides
Yasunori Futamura; Takahiro Yano; Akira Imakura; Tetsuya Sakurai
Applications of Mathematics (2017)
- Volume: 62, Issue: 4, page 333-355
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topFutamura, Yasunori, et al. "A real-valued block conjugate gradient type method for solving complex symmetric linear systems with multiple right-hand sides." Applications of Mathematics 62.4 (2017): 333-355. <http://eudml.org/doc/294084>.
@article{Futamura2017,
abstract = {We consider solving complex symmetric linear systems with multiple right-hand sides. We assume that the coefficient matrix has indefinite real part and positive definite imaginary part. We propose a new block conjugate gradient type method based on the Schur complement of a certain 2-by-2 real block form. The algorithm of the proposed method consists of building blocks that involve only real arithmetic with real symmetric matrices of the original size. We also present the convergence property of the proposed method and an efficient algorithmic implementation. In numerical experiments, we compare our method to a complex-valued direct solver, and a preconditioned and nonpreconditioned block Krylov method that uses complex arithmetic.},
author = {Futamura, Yasunori, Yano, Takahiro, Imakura, Akira, Sakurai, Tetsuya},
journal = {Applications of Mathematics},
keywords = {linear system with multiple right-hand sides; complex symmetric matrices; block Krylov subspace methods},
language = {eng},
number = {4},
pages = {333-355},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A real-valued block conjugate gradient type method for solving complex symmetric linear systems with multiple right-hand sides},
url = {http://eudml.org/doc/294084},
volume = {62},
year = {2017},
}
TY - JOUR
AU - Futamura, Yasunori
AU - Yano, Takahiro
AU - Imakura, Akira
AU - Sakurai, Tetsuya
TI - A real-valued block conjugate gradient type method for solving complex symmetric linear systems with multiple right-hand sides
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 4
SP - 333
EP - 355
AB - We consider solving complex symmetric linear systems with multiple right-hand sides. We assume that the coefficient matrix has indefinite real part and positive definite imaginary part. We propose a new block conjugate gradient type method based on the Schur complement of a certain 2-by-2 real block form. The algorithm of the proposed method consists of building blocks that involve only real arithmetic with real symmetric matrices of the original size. We also present the convergence property of the proposed method and an efficient algorithmic implementation. In numerical experiments, we compare our method to a complex-valued direct solver, and a preconditioned and nonpreconditioned block Krylov method that uses complex arithmetic.
LA - eng
KW - linear system with multiple right-hand sides; complex symmetric matrices; block Krylov subspace methods
UR - http://eudml.org/doc/294084
ER -
References
top- Axelsson, O., Kucherov, A., 10.1002/1099-1506(200005)7:4<197::AID-NLA194>3.0.CO;2-S, Numer. Linear Algebra Appl. 7 (2000), 197-218. (2000) Zbl1051.65025MR1762967DOI10.1002/1099-1506(200005)7:4<197::AID-NLA194>3.0.CO;2-S
- Axelsson, O., Neytcheva, M., Ahmad, B., 10.1007/s11075-013-9764-1, Numer. Algorithms 66 (2014), 811-841. (2014) Zbl1307.65034MR3240302DOI10.1007/s11075-013-9764-1
- Bai, Z.-Z., Benzi, M., Chen, F., 10.1007/s00607-010-0077-0, Computing 87 (2010), 93-111. (2010) Zbl1210.65074MR2640009DOI10.1007/s00607-010-0077-0
- Bai, Z.-Z., Benzi, M., Chen, F., 10.1007/s11075-010-9441-6, Numer. Algorithms 56 (2011), 297-317. (2011) Zbl1209.65037MR2755673DOI10.1007/s11075-010-9441-6
- Bai, Z.-Z., Benzi, M., Chen, F., Wang, Z.-Q., 10.1093/imanum/drs001, IMA J. Numer. Anal. 33 (2013), 343-369. (2013) Zbl1271.65100MR3020961DOI10.1093/imanum/drs001
- Bai, Z.-Z., Golub, G. H., Ng, M. K., 10.1137/S0895479801395458, SIAM J. Matrix Anal. Appl. 24 (2003), 603-626. (2003) Zbl1036.65032MR1972670DOI10.1137/S0895479801395458
- Bai, Z.-Z., Golub, G. H., Ng, M. K., 10.1002/nla.517, Numer. Linear Algebra Appl. 14 (2007), 319-335 erratum ibid. 19 2012 891. (2007) Zbl1199.65097MR2310394DOI10.1002/nla.517
- CONQUEST: Linear Scaling DFT, http://www.order-n.org/.
- Davis, T. A., Hu, Y., 10.1145/2049662.2049663, ACM Trans. Math. Softw. 38 (2011), Paper No. 1, 25 pages. (2011) Zbl06721804MR2865011DOI10.1145/2049662.2049663
- Day, D., Heroux, M. A., 10.1137/S1064827500372262, SIAM J. Sci. Comput. 23 (2001), 480-498. (2001) Zbl0992.65020MR1861261DOI10.1137/S1064827500372262
- Du, L., Futamura, Y., Sakurai, T., 10.1016/j.camwa.2013.09.023, Comput. Math. Appl. 66 (2014), 2446-2455. (2014) MR3128571DOI10.1016/j.camwa.2013.09.023
- Dubrulle, A. A., Retooling the method of block conjugate gradients, ETNA, Electron. Trans. Numer. Anal. 12 (2001), 216-233. (2001) Zbl0985.65021MR1847919
- Eigen, http://eigen.tuxfamily.org/. Zbl1362.81029
- Eisenstat, S. C., Elman, H. C., Schultz, M. H., 10.1137/0720023, SIAM J. Numer. Anal. 20 (1983), 345-357. (1983) Zbl0524.65019MR0694523DOI10.1137/0720023
- ELSES matrix library, http://www.elses.jp/matrix/.
- Freund, R. W., 10.1137/0913023, SIAM J. Sci. Stat. Comput. 13 (1992), 425-448. (1992) Zbl0761.65018MR1145195DOI10.1137/0913023
- Futamura, Y., Tadano, H., Sakurai, T., 10.14495/jsiaml.2.127, JSIAM Lett. 2 (2010), 127-130. (2010) Zbl1271.65063MR3009397DOI10.14495/jsiaml.2.127
- Ikegami, T., Sakurai, T., 10.11650/twjm/1500405869, Taiwanese J. Math. 14 (2010), 825-837. (2010) Zbl1198.65071MR2667719DOI10.11650/twjm/1500405869
- Ikegami, T., Sakurai, T., Nagashima, U., 10.1016/j.cam.2009.09.029, J. Comput. Appl. Math. 233 (2010), 1927-1936. (2010) Zbl1185.65061MR2564028DOI10.1016/j.cam.2009.09.029
- Imakura, A., Du, L., Sakurai, T., 10.1016/j.aml.2014.02.007, Appl. Math. Lett. 32 (2014), 22-27. (2014) Zbl1311.65037MR3182841DOI10.1016/j.aml.2014.02.007
- Nikishin, A. A., Yeremin, A. Y., 10.1137/S0895479893247679, SIAM J. Matrix Anal. Appl. 16 (1995), 1135-1153. (1995) Zbl0837.65029MR1351461DOI10.1137/S0895479893247679
- O'Leary, D. P., 10.1016/0024-3795(80)90247-5, Linear Algebra Appl. 29 (1980), 293-322. (1980) Zbl0426.65011MR0562766DOI10.1016/0024-3795(80)90247-5
- Paige, C. C., Saunders, M. A., 10.1137/0712047, SIAM J. Numer. Anal. 12 (1975), 617-629. (1975) Zbl0319.65025MR0383715DOI10.1137/0712047
- Polizzi, E., 10.1103/physrevb.79.115112, Phys. Rev. B 79 (2009), 115112. (2009) DOI10.1103/physrevb.79.115112
- Saad, Y., Schultz, M. H., 10.1137/0907058, SIAM J. Sci. Stat. Comput. 7 (1986), 856-869. (1986) Zbl0599.65018MR0848568DOI10.1137/0907058
- Sakurai, T., Sugiura, H., 10.1016/S0377-0427(03)00565-X, J. Comput. Appl. Math. 159 (2003), 119-128. (2003) Zbl1037.65040MR2022322DOI10.1016/S0377-0427(03)00565-X
- Sakurai, T., Tadano, H., 10.14492/hokmj/1272848031, Hokkaido Math. J. 36 (2007), 745-757. (2007) Zbl1156.65035MR2378289DOI10.14492/hokmj/1272848031
- Sogabe, T., Zhang, S.-L., 10.1016/j.cam.2005.07.032, J. Comput. Appl. Math. 199 (2007), 297-303. (2007) Zbl1108.65028MR2269511DOI10.1016/j.cam.2005.07.032
- Tadano, H., Sakurai, T., A block Krylov subspace method for the contour integral method and its application to molecular orbital computations, IPSJ Trans. Adv. Comput. Syst. 2 (2009), 10-18 Japanese. (2009)
- Vorst, H. A. van der, 10.1137/0913035, SIAM J. Sci. Stat. Comput. 13 (1992), 631-644. (1992) Zbl0761.65023MR1149111DOI10.1137/0913035
- Vorst, H. A. van der, Melissen, J. B. M., 10.1109/20.106415, IEEE Transactions on Magnetics 26 (1990), 706-708. (1990) DOI10.1109/20.106415
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.