On the optimality and sharpness of Laguerre's lower bound on the smallest eigenvalue of a symmetric positive definite matrix

Yusaku Yamamoto

Applications of Mathematics (2017)

  • Volume: 62, Issue: 4, page 319-331
  • ISSN: 0862-7940

Abstract

top
Lower bounds on the smallest eigenvalue of a symmetric positive definite matrix A m × m play an important role in condition number estimation and in iterative methods for singular value computation. In particular, the bounds based on Tr ( A - 1 ) and Tr ( A - 2 ) have attracted attention recently, because they can be computed in O ( m ) operations when A is tridiagonal. In this paper, we focus on these bounds and investigate their properties in detail. First, we consider the problem of finding the optimal bound that can be computed solely from Tr ( A - 1 ) and Tr ( A - 2 ) and show that the so called Laguerre’s lower bound is the optimal one in terms of sharpness. Next, we study the gap between the Laguerre bound and the smallest eigenvalue. We characterize the situation in which the gap becomes largest in terms of the eigenvalue distribution of A and show that the gap becomes smallest when { Tr ( A - 1 ) } 2 / Tr ( A - 2 ) approaches 1 or m . These results will be useful, for example, in designing efficient shift strategies for singular value computation algorithms.

How to cite

top

Yamamoto, Yusaku. "On the optimality and sharpness of Laguerre's lower bound on the smallest eigenvalue of a symmetric positive definite matrix." Applications of Mathematics 62.4 (2017): 319-331. <http://eudml.org/doc/294090>.

@article{Yamamoto2017,
abstract = {Lower bounds on the smallest eigenvalue of a symmetric positive definite matrix $A\in \mathbb \{R\}^\{m\times m\}$ play an important role in condition number estimation and in iterative methods for singular value computation. In particular, the bounds based on $\{\rm Tr\}(A^\{-1\})$ and $\{\rm Tr\}(A^\{-2\})$ have attracted attention recently, because they can be computed in $O(m)$ operations when $A$ is tridiagonal. In this paper, we focus on these bounds and investigate their properties in detail. First, we consider the problem of finding the optimal bound that can be computed solely from $\{\rm Tr\}(A^\{-1\})$ and $\{\rm Tr\}(A^\{-2\})$ and show that the so called Laguerre’s lower bound is the optimal one in terms of sharpness. Next, we study the gap between the Laguerre bound and the smallest eigenvalue. We characterize the situation in which the gap becomes largest in terms of the eigenvalue distribution of $A$ and show that the gap becomes smallest when $\lbrace \{\rm Tr\}(A^\{-1\})\rbrace ^2/\{\rm Tr\}(A^\{-2\})$ approaches 1 or $m$. These results will be useful, for example, in designing efficient shift strategies for singular value computation algorithms.},
author = {Yamamoto, Yusaku},
journal = {Applications of Mathematics},
keywords = {eigenvalue bound; symmetric positive definite matrix; Laguerre bound; singular value computation; dqds algorithm},
language = {eng},
number = {4},
pages = {319-331},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the optimality and sharpness of Laguerre's lower bound on the smallest eigenvalue of a symmetric positive definite matrix},
url = {http://eudml.org/doc/294090},
volume = {62},
year = {2017},
}

TY - JOUR
AU - Yamamoto, Yusaku
TI - On the optimality and sharpness of Laguerre's lower bound on the smallest eigenvalue of a symmetric positive definite matrix
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 4
SP - 319
EP - 331
AB - Lower bounds on the smallest eigenvalue of a symmetric positive definite matrix $A\in \mathbb {R}^{m\times m}$ play an important role in condition number estimation and in iterative methods for singular value computation. In particular, the bounds based on ${\rm Tr}(A^{-1})$ and ${\rm Tr}(A^{-2})$ have attracted attention recently, because they can be computed in $O(m)$ operations when $A$ is tridiagonal. In this paper, we focus on these bounds and investigate their properties in detail. First, we consider the problem of finding the optimal bound that can be computed solely from ${\rm Tr}(A^{-1})$ and ${\rm Tr}(A^{-2})$ and show that the so called Laguerre’s lower bound is the optimal one in terms of sharpness. Next, we study the gap between the Laguerre bound and the smallest eigenvalue. We characterize the situation in which the gap becomes largest in terms of the eigenvalue distribution of $A$ and show that the gap becomes smallest when $\lbrace {\rm Tr}(A^{-1})\rbrace ^2/{\rm Tr}(A^{-2})$ approaches 1 or $m$. These results will be useful, for example, in designing efficient shift strategies for singular value computation algorithms.
LA - eng
KW - eigenvalue bound; symmetric positive definite matrix; Laguerre bound; singular value computation; dqds algorithm
UR - http://eudml.org/doc/294090
ER -

References

top
  1. Aishima, K., Matsuo, T., Murota, K., Sugihara, M., A survey on convergence theorems of the dqds algorithm for computing singular values, J. Math-for-Ind. 2 (2010), 1-11. (2010) Zbl1210.65088MR2639360
  2. Alefeld, G., 10.2307/2321760, Am. Math. Monthly 88 (1981), 530-536. (1981) Zbl0486.65035MR0628022DOI10.2307/2321760
  3. Fernando, K. V., Parlett, B. N., 10.1007/s002110050024, Numer. Math. 67 (1994), 191-229. (1994) Zbl0814.65036MR1262781DOI10.1007/s002110050024
  4. Golub, G. H., Loan, C. F. Van, Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore (2013). (2013) Zbl1268.65037MR3024913
  5. Householder, A. S., The Numerical Treatment of a Single Nonlinear Equation, International Series in Pure and Applied Mathematics, McGraw-Hill Book, New York (1970). (1970) Zbl0242.65047MR0388759
  6. Iwasaki, M., Nakamura, Y., 10.1007/BF03167593, Japan J. Ind. Appl. Math. 23 (2006), 239-259. (2006) Zbl1117.65055MR2281507DOI10.1007/BF03167593
  7. Johnson, C. R., 10.1016/0024-3795(89)90583-1, Linear Algebra Appl. 112 (1989), 1-7. (1989) Zbl0723.15013MR0976325DOI10.1016/0024-3795(89)90583-1
  8. Johnson, C. R., Szulc, T., 10.1016/S0024-3795(97)00330-3, Linear Algebra Appl. 272 (1998), 169-179. (1998) Zbl0891.15013MR1489385DOI10.1016/S0024-3795(97)00330-3
  9. Kimura, K., Yamashita, T., Nakamura, Y., 10.1088/1751-8113/44/28/285207, J. Phys. A, Math. Theor. 44 (2011), Article ID 285207, 12 pages. (2011) Zbl1223.37068MR2812341DOI10.1088/1751-8113/44/28/285207
  10. Matt, U. von, 10.1137/S1064827594274887, SIAM J. Sci. Comput. 18 (1997), 1163-1186. (1997) Zbl0895.65014MR1453563DOI10.1137/S1064827594274887
  11. Yamashita, T., Kimura, K., Nakamura, Y., Subtraction-free recurrence relations for lower bounds of the minimal singular value of an upper bidiagonal matrix, J. Math-for-Ind. 4 (2012), 55-71. (2012) Zbl1302.15012MR2912032
  12. Yamashita, T., Kimura, K., Takata, M., Nakamura, Y., 10.14495/jsiaml.5.21, JSIAM Lett. 5 (2013), 21-24. (2013) MR3035546DOI10.14495/jsiaml.5.21
  13. Yamashita, T., Kimura, K., Yamamoto, Y., 10.1007/s11075-014-9931-z, Numer. Algorithms 69 (2015), 893-912. (2015) Zbl1329.65079MR3374105DOI10.1007/s11075-014-9931-z
  14. Wilkinson, J. H., The Algebraic Eigenvalue Problem, Monographs on Numerical Analysis, Oxford Science Publications, Clarendon Press, Oxford (1988). (1988) Zbl0626.65029MR0950175

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.