Bounds for the number of meeting edges in graph partitioning
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 3, page 741-752
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZeng, Qinghou, and Hou, Jianfeng. "Bounds for the number of meeting edges in graph partitioning." Czechoslovak Mathematical Journal 67.3 (2017): 741-752. <http://eudml.org/doc/294095>.
@article{Zeng2017,
abstract = {Let $G$ be a weighted hypergraph with edges of size at most 2. Bollobás and Scott conjectured that $G$ admits a bipartition such that each vertex class meets edges of total weight at least $(w_1-\Delta _1)/2+2w_2/3$, where $w_i$ is the total weight of edges of size $i$ and $\Delta _1$ is the maximum weight of an edge of size 1. In this paper, for positive integer weighted hypergraph $G$ (i.e., multi-hypergraph), we show that there exists a bipartition of $G$ such that each vertex class meets edges of total weight at least $(w_0-1)/6+(w_1-\Delta _1)/3+2w_2/3$, where $w_0$ is the number of edges of size 1. This generalizes a result of Haslegrave. Based on this result, we show that every graph with $m$ edges, except for $K_2$ and $K_\{1,3\}$, admits a tripartition such that each vertex class meets at least $\lceil \{2m\}/\{5\}\rceil $ edges, which establishes a special case of a more general conjecture of Bollobás and Scott.},
author = {Zeng, Qinghou, Hou, Jianfeng},
journal = {Czechoslovak Mathematical Journal},
keywords = {graph; weighted hypergraph; partition; judicious partition},
language = {eng},
number = {3},
pages = {741-752},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bounds for the number of meeting edges in graph partitioning},
url = {http://eudml.org/doc/294095},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Zeng, Qinghou
AU - Hou, Jianfeng
TI - Bounds for the number of meeting edges in graph partitioning
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 741
EP - 752
AB - Let $G$ be a weighted hypergraph with edges of size at most 2. Bollobás and Scott conjectured that $G$ admits a bipartition such that each vertex class meets edges of total weight at least $(w_1-\Delta _1)/2+2w_2/3$, where $w_i$ is the total weight of edges of size $i$ and $\Delta _1$ is the maximum weight of an edge of size 1. In this paper, for positive integer weighted hypergraph $G$ (i.e., multi-hypergraph), we show that there exists a bipartition of $G$ such that each vertex class meets edges of total weight at least $(w_0-1)/6+(w_1-\Delta _1)/3+2w_2/3$, where $w_0$ is the number of edges of size 1. This generalizes a result of Haslegrave. Based on this result, we show that every graph with $m$ edges, except for $K_2$ and $K_{1,3}$, admits a tripartition such that each vertex class meets at least $\lceil {2m}/{5}\rceil $ edges, which establishes a special case of a more general conjecture of Bollobás and Scott.
LA - eng
KW - graph; weighted hypergraph; partition; judicious partition
UR - http://eudml.org/doc/294095
ER -
References
top- Alon, N., Bollobás, B., Krivelevich, M., Sudakov, B., 10.1016/S0095-8956(03)00036-4, J. Comb. Theory, Ser. B 88 (2003), 329-346. (2003) Zbl1030.05060MR1983363DOI10.1016/S0095-8956(03)00036-4
- Bollobás, B., Scott, A. D., 10.1007/s004939970002, Combinatorica 19 (1999), 473-486. (1999) Zbl0985.05028MR1773653DOI10.1007/s004939970002
- Bollobás, B., Scott, A. D., 10.1006/eujc.1998.0266, Eur. J. Comb. 21 (2000), 289-300. (2000) Zbl0943.05058MR1750165DOI10.1006/eujc.1998.0266
- Bollobás, B., Scott, A. D., Better bounds for Max Cut, Contemporary Combinatorics B. Bollobás Bolyai Soc. Math. Stud. 10, János Bolyai Math. Soc., Budapest (2002), 185-246. (2002) Zbl1014.90082MR1919571
- Bollobás, B., Scott, A. D., 10.1002/rsa.10062, Random Struct. Algorithms 21 (2002), 414-430. (2002) Zbl1013.05059MR1945378DOI10.1002/rsa.10062
- Edwards, C. S., 10.4153/CJM-1973-048-x, Can. J. Math. 25 (1973), 475-485. (1973) Zbl0254.05116MR0337686DOI10.4153/CJM-1973-048-x
- Edwards, C. S., An improved lower bound for the number of edges in a largest bipartite subgraph, Recent Advances in Graph Theory Proc. Symp., Praha 1974, Academia, Praha (1975), 167-181. Zbl0326.05115MR0398888
- Fan, G., Hou, J., 10.1002/rsa.20642, Random Struct. Algorithms 50 (2017), 59-70. (2017) Zbl1352.05150MR3583026DOI10.1002/rsa.20642
- Fan, G., Hou, J., Zeng, Q., 10.1016/j.dam.2014.07.002, Discrete Appl. Math. 179 (2014), 86-99. (2014) Zbl1303.05152MR3281184DOI10.1016/j.dam.2014.07.002
- Haslegrave, J., 10.1007/s00493-012-2696-x, Combinatorica 32 (2012), 451-471. (2012) Zbl1299.05184MR2965286DOI10.1007/s00493-012-2696-x
- Hou, J., Wu, S., Yan, G., 10.1016/j.jcta.2016.02.004, J. Comb. Theory Ser. A 141 (2016), 16-32. (2016) Zbl1334.05118MR3479236DOI10.1016/j.jcta.2016.02.004
- Hou, J., Zeng, Q., 10.1017/S0963548316000274, Comb. Probab. Comput. 26 (2017), 267-284. (2017) MR3603968DOI10.1017/S0963548316000274
- Liu, M., Xu, B., 10.1007/s10878-015-9828-3, J. Comb. Optim. 31 (2016), 1383-1398. (2016) Zbl1335.05095MR3480573DOI10.1007/s10878-015-9828-3
- Ma, J., Yen, P.-L., Yu, X., 10.1016/j.jctb.2010.06.002, J. Comb. Theory, Ser. B 100 (2010), 631-649. (2010) Zbl1208.05115MR2718683DOI10.1016/j.jctb.2010.06.002
- Ma, J., Yu, X., 10.1007/s00493-015-2944-y, Combinatorica 36 (2016), 537-556. (2016) MR3572424DOI10.1007/s00493-015-2944-y
- Scott, A., 10.1017/CBO9780511734885, Surveys in Combinatorics B. Webb Conf. Proc., Durham, 2005, London Mathematical Society Lecture Note Series 327, Cambridge University Press, Cambridge (2005), 95-117. (2005) Zbl1110.05084MR2187736DOI10.1017/CBO9780511734885
- Xu, X., Yan, G., Zhang, Y., 10.1007/s11425-015-5039-8, Sci. China, Math. 59 (2016), 609-616. (2016) Zbl1338.05219MR3457058DOI10.1007/s11425-015-5039-8
- Xu, B., Yu, X., 10.1016/j.jctb.2008.08.007, J. Comb. Theory, Ser. B 99 (2009), 324-337. (2009) Zbl1184.05099MR2482952DOI10.1016/j.jctb.2008.08.007
- Xu, B., Yu, X., 10.1017/S0963548311000204, Comb. Probab. Comput. 20 (2011), 631-640. (2011) Zbl1223.05245MR2805402DOI10.1017/S0963548311000204
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.