A topological duality for the -chains associated with the logic
Verónica Quiroga; Víctor Fernández
Mathematica Bohemica (2017)
- Volume: 142, Issue: 3, page 225-241
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topQuiroga, Verónica, and Fernández, Víctor. "A topological duality for the $F$-chains associated with the logic $C_\omega $." Mathematica Bohemica 142.3 (2017): 225-241. <http://eudml.org/doc/294098>.
@article{Quiroga2017,
abstract = {In this paper we present a topological duality for a certain subclass of the $F_\{\omega \}$-structures defined by M. M. Fidel, which conform to a non-standard semantics for the paraconsistent N. C. A. da Costa logic $C_\omega $. Actually, the duality introduced here is focused on $F_\omega $-structures whose supports are chains. For our purposes, we characterize every $F_\omega $-chain by means of a new structure that we will call down-covered chain (DCC) here. This characterization will allow us to prove the dual equivalence between the category of $F_\omega $-chains and a new category, whose objects are certain special topological spaces (together with a distinguished family of open sets) and whose morphisms are particular continuous functions.},
author = {Quiroga, Verónica, Fernández, Víctor},
journal = {Mathematica Bohemica},
keywords = {paraconsistent logic; algebraic logic; dualities for ordered structures},
language = {eng},
number = {3},
pages = {225-241},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A topological duality for the $F$-chains associated with the logic $C_\omega $},
url = {http://eudml.org/doc/294098},
volume = {142},
year = {2017},
}
TY - JOUR
AU - Quiroga, Verónica
AU - Fernández, Víctor
TI - A topological duality for the $F$-chains associated with the logic $C_\omega $
JO - Mathematica Bohemica
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 142
IS - 3
SP - 225
EP - 241
AB - In this paper we present a topological duality for a certain subclass of the $F_{\omega }$-structures defined by M. M. Fidel, which conform to a non-standard semantics for the paraconsistent N. C. A. da Costa logic $C_\omega $. Actually, the duality introduced here is focused on $F_\omega $-structures whose supports are chains. For our purposes, we characterize every $F_\omega $-chain by means of a new structure that we will call down-covered chain (DCC) here. This characterization will allow us to prove the dual equivalence between the category of $F_\omega $-chains and a new category, whose objects are certain special topological spaces (together with a distinguished family of open sets) and whose morphisms are particular continuous functions.
LA - eng
KW - paraconsistent logic; algebraic logic; dualities for ordered structures
UR - http://eudml.org/doc/294098
ER -
References
top- Balbes, R., Dwinger, P., Distributive Lattices, University of Missouri Press, Columbia (1974). (1974) Zbl0321.06012MR0373985
- Carnielli, W. A., Marcos, J., 10.1305/ndjfl/1022615617, Notre Dame J. Formal Logic 40 (1999), 375-390. (1999) Zbl1007.03028MR1845624DOI10.1305/ndjfl/1022615617
- Celani, S. A., Cabrer, L. M., Montangie, D., 10.2478/s11533-009-0032-5, Cent. Eur. J. Math. 7 (2009), 463-478. (2009) Zbl1184.03064MR2534466DOI10.2478/s11533-009-0032-5
- Celani, S. A., Montangie, D., 10.1007/s00012-012-0178-z, Algebra Univers. 67 (2012), 237-255. (2012) Zbl1254.03117MR2910125DOI10.1007/s00012-012-0178-z
- Costa, N. C. A. da, 10.1305/ndjfl/1093891487, Notre Dame J. Formal Logic 15 (1974), 497-510. (1974) Zbl0236.02022MR0354361DOI10.1305/ndjfl/1093891487
- Davey, B. A., Priestley, H. A., Introduction to Lattices and Order, Cambridge University Press, Cambridge (1990). (1990) Zbl0701.06001MR1058437
- Fidel, M. M., The decidability of the calculi , Rep. Math. Logic 8 (1977), 31-40. (1977) Zbl0378.02011MR0479957
- Fidel, M. M., An algebraic study of logic with constructible negation, Proc. 3rd Brazilian Conf. Mathematical Logic, Recife, 1979 (A. I. Arruda et al., eds.) Soc. Brasil. Lógica, Sao Paulo (1980), 119-129. (1980) Zbl0453.03024MR0603663
- Jansana, R., Rivieccio, U., Priestley duality for -lattices, Proc. 8th Conf. European Society for Fuzzy Logic and Technology, 2013, pp. 263-269.
- Mandelker, M., 10.1215/S0012-7094-70-03748-8, Duke Math. J. 37 (1970), 377-386. (1970) Zbl0206.29701MR0256951DOI10.1215/S0012-7094-70-03748-8
- Odintsov, S. P., 10.1007/978-1-4020-6867-6, Trends in Logic---Studia Logica Library 26. Springer, New York (2008). (2008) Zbl1161.03014MR2680932DOI10.1007/978-1-4020-6867-6
- Priestley, H. A., 10.1112/plms/s3-24.3.507, Proc. Lond. Math. Soc. (3) 24 (1972), 507-530. (1972) Zbl0323.06011MR0300949DOI10.1112/plms/s3-24.3.507
- Quiroga, V., An alternative definition of -structures for the logic , Bull. Sect. Log., Univ. Łódź, Dep. Log. 42 (2013), 119-134. (2013) Zbl1287.03060MR3168734
- Rasiowa, H., Sikorski, R., The Mathematics of Metamathematics, Monografie Matematyczne 41. Panstwowe Wydawnictwo Naukowe, Warsaw (1963). (1963) Zbl0122.24311MR0163850
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.