Invariants of finite groups generated by generalized transvections in the modular case
Xiang Han; Jizhu Nan; Chander K. Gupta
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 3, page 655-698
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHan, Xiang, Nan, Jizhu, and Gupta, Chander K.. "Invariants of finite groups generated by generalized transvections in the modular case." Czechoslovak Mathematical Journal 67.3 (2017): 655-698. <http://eudml.org/doc/294101>.
@article{Han2017,
abstract = {We investigate the invariant rings of two classes of finite groups $G\le \{\rm GL\}(n,F_q)$ which are generated by a number of generalized transvections with an invariant subspace $H$ over a finite field $F_q$ in the modular case. We name these groups generalized transvection groups. One class is concerned with a given invariant subspace which involves roots of unity. Constructing quotient groups and tensors, we deduce the invariant rings and study their Cohen-Macaulay and Gorenstein properties. The other is concerned with different invariant subspaces which have the same dimension. We provide a explicit classification of these groups and calculate their invariant rings.},
author = {Han, Xiang, Nan, Jizhu, Gupta, Chander K.},
journal = {Czechoslovak Mathematical Journal},
keywords = {invariant ring; transvection; generalized transvection group},
language = {eng},
number = {3},
pages = {655-698},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Invariants of finite groups generated by generalized transvections in the modular case},
url = {http://eudml.org/doc/294101},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Han, Xiang
AU - Nan, Jizhu
AU - Gupta, Chander K.
TI - Invariants of finite groups generated by generalized transvections in the modular case
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 655
EP - 698
AB - We investigate the invariant rings of two classes of finite groups $G\le {\rm GL}(n,F_q)$ which are generated by a number of generalized transvections with an invariant subspace $H$ over a finite field $F_q$ in the modular case. We name these groups generalized transvection groups. One class is concerned with a given invariant subspace which involves roots of unity. Constructing quotient groups and tensors, we deduce the invariant rings and study their Cohen-Macaulay and Gorenstein properties. The other is concerned with different invariant subspaces which have the same dimension. We provide a explicit classification of these groups and calculate their invariant rings.
LA - eng
KW - invariant ring; transvection; generalized transvection group
UR - http://eudml.org/doc/294101
ER -
References
top- Bass, H., 10.1007/BF01112819, Math. Z. 82 (1963), 8-28. (1963) Zbl0112.26604MR0153708DOI10.1007/BF01112819
- Bertin, M.-J., Anneaux d’invariants d’anneaux de polynômes, en caractéristique , C. R. Acad. Sci., Paris, Sér. A 264 (1967), 653-656 French. (1967) Zbl0147.29503MR0215826
- Braun, A., 10.1016/j.jalgebra.2011.07.030, J. Algebra 345 (2011), 81-99. (2011) Zbl1243.13003MR2842055DOI10.1016/j.jalgebra.2011.07.030
- Bruns, W., Herzog, J., 10.1017/CBO9780511608681, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1998). (1998) Zbl0909.13005MR1251956DOI10.1017/CBO9780511608681
- Campbell, H. E. A., Geramita, A. V., Hughes, I. P., Shank, R. J., Wehlau, D. L., 10.4153/CMB-1999-018-4, Can. Math. Bull. 42 (1999), 155-161. (1999) Zbl0942.13007MR1692004DOI10.4153/CMB-1999-018-4
- Derksen, H., Kemper, G., 10.1007/978-3-662-04958-7, Encyclopaedia of Mathematical Sciences 130, Invariant Theory and Algebraic Transformation Groups 1, Springer, Berlin (2002). (2002) Zbl1011.13003MR1918599DOI10.1007/978-3-662-04958-7
- Dickson, L. E., 10.1090/S0002-9947-1907-1500782-9, Amer. M. S. Trans. 8 (1907), 205-232 9999JFM99999 38.0147.02. (1907) MR1500782DOI10.1090/S0002-9947-1907-1500782-9
- Han, X., Nan, J., Nam, K., The invariants of generalized transvection groups in the modular case, Commun. Math. Res. 33 (2017), 160-176. (2017) MR3676528
- Hochster, M., Eagon, J. A., 10.2307/2373744, Am. J. Math. 93 (1971), 1020-1058. (1971) Zbl0244.13012MR0302643DOI10.2307/2373744
- Huang, J., 10.1016/j.jalgebra.2010.09.010, J. Algebra 328 (2011), 432-442. (2011) Zbl1225.14039MR2745575DOI10.1016/j.jalgebra.2010.09.010
- Kemper, G., Malle, G., 10.1007/BF01234631, Transform. Groups 2 (1997), 57-89. (1997) Zbl0899.13004MR1439246DOI10.1007/BF01234631
- Milnor, J. W., 10.1515/9781400881796, Annals of Mathematics Studies 72, Princeton University Press and University of Tokyo Press, Princeton (1971). (1971) Zbl0237.18005MR0349811DOI10.1515/9781400881796
- Nakajima, H., 10.21099/tkbjm/1496158618, Tsukuba J. Math. 3 (1979), 109-122. (1979) Zbl0418.20041MR0543025DOI10.21099/tkbjm/1496158618
- Nakajima, H., 10.1017/s0027763000019875, Nagoya Math. J. 86 (1982), 229-248. (1982) Zbl0443.14005MR0661227DOI10.1017/s0027763000019875
- Nakajima, H., 10.1016/0021-8693(83)90094-7, J. Algebra 85 (1983), 253-286. (1983) Zbl0536.20028MR0725082DOI10.1016/0021-8693(83)90094-7
- Neusel, M. D., Smith, L., 10.1016/S0022-4049(96)00079-5, J. Pure Appl. Algebra 122 (1997), 87-105. (1997) Zbl0901.13006MR1479349DOI10.1016/S0022-4049(96)00079-5
- Neusel, M. D., Smith, L., 10.1090/surv/094, Mathematical Surveys and Monographs 94, American Mathematical Society, Providence (2002). (2002) Zbl0999.13002MR1869812DOI10.1090/surv/094
- Smith, L., 10.4153/CMB-1996-030-2, Can. Math. Bull. 39 (1996), 238-240. (1996) Zbl0868.13006MR1390361DOI10.4153/CMB-1996-030-2
- Smith, L., Stong, R. E., 10.1016/0021-8693(87)90040-8, J. Algebra 110 (1987), 134-157. (1987) Zbl0652.20046MR0904185DOI10.1016/0021-8693(87)90040-8
- Stanley, R. P., 10.1090/S0273-0979-1979-14597-X, Bull. Am. Math. Soc., New Ser. 1 (1979), 475-511. (1979) Zbl0497.20002MR0526968DOI10.1090/S0273-0979-1979-14597-X
- Steinberg, R., On Dickson's theorem on invariants, J. Fac. Sci., Univ. Tokyo, Sect. I A 34 (1987), 699-707. (1987) Zbl0656.20052MR0927606
- You, H., Lan, J., 10.1016/0024-3795(93)90294-X, Linear Algebra Appl. 186 (1993), 235-253. (1993) Zbl0773.15005MR1217208DOI10.1016/0024-3795(93)90294-X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.