Characterizing projective general unitary groups by their complex group algebras
Farrokh Shirjian; Ali Iranmanesh
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 3, page 819-826
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topShirjian, Farrokh, and Iranmanesh, Ali. "Characterizing projective general unitary groups ${\rm PGU}_3(q^2)$ by their complex group algebras." Czechoslovak Mathematical Journal 67.3 (2017): 819-826. <http://eudml.org/doc/294105>.
@article{Shirjian2017,
abstract = {Let $G$ be a finite group. Let $X_1(G)$ be the first column of the ordinary character table of $G$. We will show that if $X_1(G)=X_1(\{\rm PGU\}_3(q^2))$, then $G \cong \{\rm PGU\}_3(q^2)$. As a consequence, we show that the projective general unitary groups $\{\rm PGU\}_3(q^2)$ are uniquely determined by the structure of their complex group algebras.},
author = {Shirjian, Farrokh, Iranmanesh, Ali},
journal = {Czechoslovak Mathematical Journal},
keywords = {character degree; complex group algebra; projective general unitary group},
language = {eng},
number = {3},
pages = {819-826},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Characterizing projective general unitary groups $\{\rm PGU\}_3(q^2)$ by their complex group algebras},
url = {http://eudml.org/doc/294105},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Shirjian, Farrokh
AU - Iranmanesh, Ali
TI - Characterizing projective general unitary groups ${\rm PGU}_3(q^2)$ by their complex group algebras
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 819
EP - 826
AB - Let $G$ be a finite group. Let $X_1(G)$ be the first column of the ordinary character table of $G$. We will show that if $X_1(G)=X_1({\rm PGU}_3(q^2))$, then $G \cong {\rm PGU}_3(q^2)$. As a consequence, we show that the projective general unitary groups ${\rm PGU}_3(q^2)$ are uniquely determined by the structure of their complex group algebras.
LA - eng
KW - character degree; complex group algebra; projective general unitary group
UR - http://eudml.org/doc/294105
ER -
References
top- Berkovich, Y. G., Zhmud', E. M., Characters of Finite Groups. Part 1, Translations of Mathematical Monographs 172, American Mathematical Society, Providence (1998). (1998) Zbl0934.20008MR1486039
- Bessenrodt, C., Nguyen, H. N., Olsson, J. B., Tong-Viet, H. P., 10.2140/ant.2015.9.601, Algebra Number Theory 9 (2015), 601-628. (2015) Zbl1321.20011MR3340546DOI10.2140/ant.2015.9.601
- Brauer, R., Representations of finite groups, Lect. Modern Math. 1 (1963), 133-175. (1963) Zbl0124.26504MR0178056
- Carter, R. W., Finite Groups of Lie Type. Conjugacy Classes and Complex Characters, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Chichester (1993). (1993) Zbl0567.20023MR1266626
- Dolfi, S., Navarro, G., Tiep, P. H., 10.1007/s00209-007-0247-8, Math. Z. 259 (2008), 755-774. (2008) Zbl1149.20006MR2403740DOI10.1007/s00209-007-0247-8
- Gorenstein, D., Lyons, R., Solomon, R., The Classification of the Finite Simple Groups. Part I. Chapter A: Almost Simple -Groups, Mathematical Surveys and Monographs 40, American Mathematical Society, Providence (1998). (1998) Zbl0890.20012MR1490581
- Heydari, S., Ahanjideh, N., 10.2298/PIM150111017H, Publ. Inst. Math., Nouv. Sér. 99 (2016), 257-264. (2016) Zbl06749629MR3524049DOI10.2298/PIM150111017H
- Huppert, B., Some simple groups, which are determined by the set of their character degrees III, Preprint. MR1804317
- Kimmerle, W., Group rings of finite simple groups, Resen. Inst. Mat. Estat. Univ. São Paulo 5 (2002), 261-278. (2002) Zbl1047.20007MR2015338
- Lewis, M. L., 10.1515/jgth.2001.023, J. Group Theory 4 (2001), 255-275. (2001) Zbl0998.20009MR1839998DOI10.1515/jgth.2001.023
- Lübeck, F., Data for finite groups of Lie type and related algebraic groups, Available at http://www.math.rwth-aachen.de/Frank.Luebeck/chev/index.html.
- Malle, G., Testerman, D., 10.1017/CBO9780511994777, Cambridge Studies in Advanced Mathematics 133, Cambridge University Press, Cambridge (2011). (2011) Zbl1256.20045MR2850737DOI10.1017/CBO9780511994777
- Meng, Q., Zeng, J., 10.1142/S1005386713000060, Algebra Colloq. 20 (2013), 75-80. (2013) Zbl1280.20009MR3020718DOI10.1142/S1005386713000060
- Nagl, M., Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Gruppenalgebra, Stuttgarter Mathematische Berichte (2011), German Available at http://www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-007.pdf. (2011)
- Nguyen, H. N., 10.1007/s11856-012-0142-9, Isr. J. Math. 195 (2013), 973-998. (2013) Zbl1294.20004MR3096579DOI10.1007/s11856-012-0142-9
- Nguyen, H. N., Tong-Viet, H. P., 10.1007/s10468-012-9400-0, Algebr. Represent. Theory 17 (2014), 305-320. (2014) Zbl1303.20001MR3160726DOI10.1007/s10468-012-9400-0
- Shirjian, F., Iranmanesh, A., 10.1080/00927872.2017.1324868, To appear in Commun. Algebra. DOI10.1080/00927872.2017.1324868
- Simpson, W. A., Frame, J. S., 10.4153/CJM-1973-049-7, Can. J. Math. 25 (1973), 486-494. (1973) Zbl0264.20010MR0335618DOI10.4153/CJM-1973-049-7
- Tong-Viet, H. P., 10.1016/j.jalgebra.2010.11.018, J. Algebra 334 (2011), 275-284. (2011) Zbl1246.20007MR2787664DOI10.1016/j.jalgebra.2010.11.018
- Tong-Viet, H. P., 10.1007/s10468-010-9247-1, Algebr. Represent. Theory 15 (2012), 379-389. (2012) Zbl1252.20005MR2892513DOI10.1007/s10468-010-9247-1
- Tong-Viet, H. P., 10.1016/j.jalgebra.2012.02.011, J. Algebra 357 (2012), 61-68. (2012) Zbl1259.20008MR2905242DOI10.1016/j.jalgebra.2012.02.011
- Tong-Viet, H. P., 10.1007/s00605-011-0301-9, Monatsh. Math. 166 (2012), 559-577. (2012) Zbl1255.20006MR2925155DOI10.1007/s00605-011-0301-9
- Wakefield, T. P., 10.1080/00927870802625661, Commun. Algebra 37 (2009), 2887-2906. (2009) Zbl1185.20014MR2543522DOI10.1080/00927870802625661
- Zsigmondy, K., 10.1007/BF01692444, Monatsh. Math. Phys. 3 (1892), 265-284 German 9999JFM99999 24.0176.02. (1892) MR1546236DOI10.1007/BF01692444
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.