Weak Solutions for Nonlinear Parabolic Equations with Variable Exponents

Lingeshwaran Shangerganesh; Arumugam Gurusamy; Krishnan Balachandran

Communications in Mathematics (2017)

  • Volume: 25, Issue: 1, page 55-70
  • ISSN: 1804-1388

Abstract

top
In this work, we study the existence and uniqueness of weak solutions of fourth-order degenerate parabolic equation with variable exponent using the difference and variation methods.

How to cite

top

Shangerganesh, Lingeshwaran, Gurusamy, Arumugam, and Balachandran, Krishnan. "Weak Solutions for Nonlinear Parabolic Equations with Variable Exponents." Communications in Mathematics 25.1 (2017): 55-70. <http://eudml.org/doc/294106>.

@article{Shangerganesh2017,
abstract = {In this work, we study the existence and uniqueness of weak solutions of fourth-order degenerate parabolic equation with variable exponent using the difference and variation methods.},
author = {Shangerganesh, Lingeshwaran, Gurusamy, Arumugam, Balachandran, Krishnan},
journal = {Communications in Mathematics},
keywords = {$p(x)$-Laplacian; Weak solution; Variable exponents},
language = {eng},
number = {1},
pages = {55-70},
publisher = {University of Ostrava},
title = {Weak Solutions for Nonlinear Parabolic Equations with Variable Exponents},
url = {http://eudml.org/doc/294106},
volume = {25},
year = {2017},
}

TY - JOUR
AU - Shangerganesh, Lingeshwaran
AU - Gurusamy, Arumugam
AU - Balachandran, Krishnan
TI - Weak Solutions for Nonlinear Parabolic Equations with Variable Exponents
JO - Communications in Mathematics
PY - 2017
PB - University of Ostrava
VL - 25
IS - 1
SP - 55
EP - 70
AB - In this work, we study the existence and uniqueness of weak solutions of fourth-order degenerate parabolic equation with variable exponent using the difference and variation methods.
LA - eng
KW - $p(x)$-Laplacian; Weak solution; Variable exponents
UR - http://eudml.org/doc/294106
ER -

References

top
  1. Andreianov, B., Bendahmane, M., Ouaro, S., 10.1016/j.na.2010.02.039, Nonlinear Anal., 73, 2010, 2-24, (2010) Zbl1191.35126MR2645827DOI10.1016/j.na.2010.02.039
  2. Ansini, L., Giacomelli, L., 10.1088/0951-7715/15/6/318, Nonlinearity, 15, 2002, 2147-2164, (2002) MR1938485DOI10.1088/0951-7715/15/6/318
  3. Ansini, L., Giacomelli, L., 10.1007/s00205-004-0313-x, Arch. Ration. Mech. Anal., 173, 2004, 89-131, (2004) Zbl1064.76012MR2073506DOI10.1007/s00205-004-0313-x
  4. Antontsev, S.N., Shmarev, S.I., 10.1016/j.na.2004.09.026, Nonlinear Anal., 60, 2005, 515-545, (2005) Zbl1066.35045MR2103951DOI10.1016/j.na.2004.09.026
  5. Antontsev, S., Shmarev, S., Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions, Handbook of Differential Equations: Stationary Partial Differential Equations, 3, 2006, 1-100, (2006) Zbl1192.35047
  6. Antontsev, S., Shmarev, S., 10.1007/978-3-7643-7719-9_4, Internat. Ser. Numer. Math., 154, 2006, 33-44, (2006) MR2305342DOI10.1007/978-3-7643-7719-9_4
  7. Antontsev, S., Shmarev, S., 10.1016/j.cam.2010.01.026, J. Comput. Appl. Math., 234, 2010, 2633-2645, (2010) Zbl1196.35057MR2652114DOI10.1016/j.cam.2010.01.026
  8. Antontsev, S., Shmarev, S., 10.1016/j.jmaa.2009.07.019, J. Math. Anal. Appl., 361, 2010, 371-391, (2010) Zbl1183.35177MR2568702DOI10.1016/j.jmaa.2009.07.019
  9. Bertsch, M., Giacomelli, L., Lorenzo, G., Karali, G., 10.1016/j.physd.2005.06.012, Physica D, 209, 2005, 17-27, (2005) Zbl1079.76011MR2167440DOI10.1016/j.physd.2005.06.012
  10. Bhuvaneswari, V., Shangerganesh, L., Balachandran, K., Weak solutions for p -Laplacian equation, Adv. Nonlinear Anal., 1, 2012, 319-334, (2012) Zbl1277.35117MR3037124
  11. Bowen, M., Hulshof, J., King, J. R., 10.1137/S0036139900366936, SIAM J. Appl. Math., 62, 2001, 149-179, (2001) Zbl1001.35074MR1857540DOI10.1137/S0036139900366936
  12. Cahn, J. W., Hilliard, J. E., 10.1063/1.1744102, J. Chem. Phys., 28, 1958, 258-367, (1958) DOI10.1063/1.1744102
  13. Calderon, C. P., Kwembe, T. A., Dispersal models, Rev. Union Mat. Argentina, 37, 1991, 212-229, (1991) Zbl0795.92029MR1266684
  14. Chang, K., Critical Point Theory and Its Applications, 1986, Shangai Sci. Tech. Press, Shangai, (1986) Zbl0698.58002MR0865982
  15. Chen, Y., Levine, S., Rao, M., 10.1137/050624522, SIAM J. Appl. Math., 66, 2006, 1383-1406, (2006) Zbl1102.49010MR2246061DOI10.1137/050624522
  16. Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M., Lebesgue and Sobolev Spaces With Variable Exponents, 2011, Springer-Verlag, Heidelberg, (2011) Zbl1222.46002MR2790542
  17. Evans, L. C., Weak Convergence Methods for Nonlinear Partial Differential Equations, 1990, American Mathematical Society, Providence, RI, (1990) Zbl0698.35004MR1034481
  18. Gao, W., Guo, Z., Existence and localization of weak solutions of nonlinear parabolic equations with variable exponent of nonlinearity, Ann. Mat. Pura Appl., 191, 2012, 551-562, (2012) Zbl1272.35135MR2958349
  19. Guo, Z., Liu, Q., Sun, J., Wu, B., Reaction-diffusion systems with p ( x ) -growth for image denoising, Nonlinear Anal. RWA, 12, 2011, 2904-2918, (2011) Zbl1219.35340MR2813233
  20. King, J. R., 10.1016/S0895-7177(01)00095-4, Math. Comput. Modeling, 34, 2001, 737-756, (2001) MR1858796DOI10.1016/S0895-7177(01)00095-4
  21. Lions, J., Quelques Methodes de Resolution des Problems aux Limites Non lineaire, 1969, Dunod Editeur Gauthier Villars, Paris, (1969) 
  22. Liu, C., Some properties of solutions for the generalized thin film equation in one space dimension, Boletin de la Asociacion Matematica venezolana, 12, 2005, 43-52, (2005) Zbl1099.35115MR2192402
  23. Liu, C., Yin, J., Gao, H., 10.1142/S0252959904000329, Chin. Ann. Math., 25, 2004, 347-358, (2004) MR2086127DOI10.1142/S0252959904000329
  24. Ruzicka, M., Electrorheological Fluids: Modeling and Mathematical Theory, 1748, 2000, Springer-Verlag, Berlin, (2000) Zbl0968.76531MR1810360
  25. Xu, M., Zhou, S., 10.1016/j.na.2004.01.013, Nonlinear Anal., 60, 2005, 755-774, (2005) Zbl1073.35102MR2109157DOI10.1016/j.na.2004.01.013
  26. Xu, M., Zhou, S., 10.1016/j.jmaa.2007.03.075, J. Math. Anal. Appl., 337, 2008, 49-60, (2008) Zbl1124.35025MR2356053DOI10.1016/j.jmaa.2007.03.075
  27. Zang, A., Fu, Y., 10.1016/j.na.2007.10.001, Nonlinear Anal., 69, 2008, 3629-3636, (2008) Zbl1153.26312MR2450565DOI10.1016/j.na.2007.10.001
  28. Zhang, C., Zhou, S., A fourth-order degenerate parabolic equation with variable exponent, J. Part. Diff. Eq., 2009, 1-16, (2009) Zbl1212.35259MR2589555
  29. Zhang, C., Zhou, S., 10.1016/j.jde.2009.11.024, J. Differential Equations, 248, 2010, 1376-1400, (2010) Zbl1195.35097MR2593046DOI10.1016/j.jde.2009.11.024
  30. Zhou, S., 10.1016/S0362-546X(99)00135-2, Nonlinear Anal., 42, 2000, 887-904, (2000) MR1776929DOI10.1016/S0362-546X(99)00135-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.