Improving backward stability of Sakurai-Sugiura method with balancing technique in polynomial eigenvalue problem

Hongjia Chen; Akira Imakura; Tetsuya Sakurai

Applications of Mathematics (2017)

  • Volume: 62, Issue: 4, page 357-375
  • ISSN: 0862-7940

Abstract

top
One of the most efficient methods for solving the polynomial eigenvalue problem (PEP) is the Sakurai-Sugiura method with Rayleigh-Ritz projection (SS-RR), which finds the eigenvalues contained in a certain domain using the contour integral. The SS-RR method converts the original PEP to a small projected PEP using the Rayleigh-Ritz projection. However, the SS-RR method suffers from backward instability when the norms of the coefficient matrices of the projected PEP vary widely. To improve the backward stability of the SS-RR method, we combine it with a balancing technique for solving a small projected PEP. We then analyze the backward stability of the SS-RR method. Several numerical examples demonstrate that the SS-RR method with the balancing technique reduces the backward error of eigenpairs of PEP.

How to cite

top

Chen, Hongjia, Imakura, Akira, and Sakurai, Tetsuya. "Improving backward stability of Sakurai-Sugiura method with balancing technique in polynomial eigenvalue problem." Applications of Mathematics 62.4 (2017): 357-375. <http://eudml.org/doc/294107>.

@article{Chen2017,
abstract = {One of the most efficient methods for solving the polynomial eigenvalue problem (PEP) is the Sakurai-Sugiura method with Rayleigh-Ritz projection (SS-RR), which finds the eigenvalues contained in a certain domain using the contour integral. The SS-RR method converts the original PEP to a small projected PEP using the Rayleigh-Ritz projection. However, the SS-RR method suffers from backward instability when the norms of the coefficient matrices of the projected PEP vary widely. To improve the backward stability of the SS-RR method, we combine it with a balancing technique for solving a small projected PEP. We then analyze the backward stability of the SS-RR method. Several numerical examples demonstrate that the SS-RR method with the balancing technique reduces the backward error of eigenpairs of PEP.},
author = {Chen, Hongjia, Imakura, Akira, Sakurai, Tetsuya},
journal = {Applications of Mathematics},
keywords = {SS-RR method; polynomial eigenvalue problem; balancing technique},
language = {eng},
number = {4},
pages = {357-375},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Improving backward stability of Sakurai-Sugiura method with balancing technique in polynomial eigenvalue problem},
url = {http://eudml.org/doc/294107},
volume = {62},
year = {2017},
}

TY - JOUR
AU - Chen, Hongjia
AU - Imakura, Akira
AU - Sakurai, Tetsuya
TI - Improving backward stability of Sakurai-Sugiura method with balancing technique in polynomial eigenvalue problem
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 4
SP - 357
EP - 375
AB - One of the most efficient methods for solving the polynomial eigenvalue problem (PEP) is the Sakurai-Sugiura method with Rayleigh-Ritz projection (SS-RR), which finds the eigenvalues contained in a certain domain using the contour integral. The SS-RR method converts the original PEP to a small projected PEP using the Rayleigh-Ritz projection. However, the SS-RR method suffers from backward instability when the norms of the coefficient matrices of the projected PEP vary widely. To improve the backward stability of the SS-RR method, we combine it with a balancing technique for solving a small projected PEP. We then analyze the backward stability of the SS-RR method. Several numerical examples demonstrate that the SS-RR method with the balancing technique reduces the backward error of eigenpairs of PEP.
LA - eng
KW - SS-RR method; polynomial eigenvalue problem; balancing technique
UR - http://eudml.org/doc/294107
ER -

References

top
  1. Asakura, J., Sakurai, T., Tadano, H., Ikegami, T., Kimura, K., 10.14495/jsiaml.1.52, JSIAM Lett. 1 (2009), 52-55. (2009) Zbl1278.65072MR3042556DOI10.14495/jsiaml.1.52
  2. Asakura, J., Sakurai, T., Tadano, H., Ikegami, T., Kimura, K., 10.1007/s13160-010-0005-x, Japan J. Ind. Appl. Math. 27 (2010), 73-90. (2010) Zbl1204.65056MR2685138DOI10.1007/s13160-010-0005-x
  3. Betcke, T., Higham, N. J., Mehrmann, V., Schröder, C., Tisseur, F., 10.1145/2427023.2427024, ACM Trans. Math. Softw. 39 (2013), Paper No. 7, 28 pages. (2013) Zbl1295.65140MR3031626DOI10.1145/2427023.2427024
  4. Chen, H., Maeda, Y., Imakura, A., Sakurai, T., Tisseur, F., 10.14495/jsiaml.9.17, JSIAM Lett. 9 (2017), 17-20. (2017) MR3637096DOI10.14495/jsiaml.9.17
  5. Higham, N. J., Li, R., Tisseur, F., 10.1137/060663738, SIAM J. Matrix Anal. Appl. 29 (2007), 1218-1241. (2007) Zbl1159.65042MR2369292DOI10.1137/060663738
  6. Higham, N. J., Mackey, D. S., Tisseur, F., Garvey, S. D., 10.1002/nme.2076, Int. J. Numer. Methods Eng. 73 (2008), 344-360. (2008) Zbl1166.74009MR2382048DOI10.1002/nme.2076
  7. Ikegami, T., Sakurai, T., 10.11650/twjm/1500405869, Taiwanese J. Math. 14 (2010), 825-837. (2010) Zbl1198.65071MR2667719DOI10.11650/twjm/1500405869
  8. Ikegami, T., Sakurai, T., Nagashima, U., 10.1016/j.cam.2009.09.029, J. Comput. Appl. Math. 233 (2010), 1927-1936. (2010) Zbl1185.65061MR2564028DOI10.1016/j.cam.2009.09.029
  9. Osborne, E. E., 10.1145/321043.321048, J. Assoc. Comput. Math. 7 (1960), 338-345. (1960) Zbl0106.31604MR0143333DOI10.1145/321043.321048
  10. Parlett, B., Reinsch, C., 10.1007/BF02165404, Numer. Math. 13 (1969), 293-304. (1969) Zbl0184.37703MR1553969DOI10.1007/BF02165404
  11. Sakurai, T., Sugiura, H., 10.1016/S0377-0427(03)00565-X, J. Comput. Appl. Math. 159 (2003), 119-128. (2003) Zbl1037.65040MR2022322DOI10.1016/S0377-0427(03)00565-X
  12. Tisseur, F., 10.1016/S0024-3795(99)00063-4, Linear Algebra Appl. 309 (2000), 339-361. (2000) Zbl0955.65027MR1758374DOI10.1016/S0024-3795(99)00063-4
  13. Tisseur, F., Meerbergen, K., 10.1137/S0036144500381988, SIAM Rev. 43 (2001), 235-286. (2001) Zbl0985.65028MR1861082DOI10.1137/S0036144500381988
  14. Yokota, S., Sakurai, T., 10.14495/jsiaml.5.41, JSIAM Lett. 5 (2013), 41-44. (2013) MR3035551DOI10.14495/jsiaml.5.41

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.