Improving backward stability of Sakurai-Sugiura method with balancing technique in polynomial eigenvalue problem
Hongjia Chen; Akira Imakura; Tetsuya Sakurai
Applications of Mathematics (2017)
- Volume: 62, Issue: 4, page 357-375
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topChen, Hongjia, Imakura, Akira, and Sakurai, Tetsuya. "Improving backward stability of Sakurai-Sugiura method with balancing technique in polynomial eigenvalue problem." Applications of Mathematics 62.4 (2017): 357-375. <http://eudml.org/doc/294107>.
@article{Chen2017,
abstract = {One of the most efficient methods for solving the polynomial eigenvalue problem (PEP) is the Sakurai-Sugiura method with Rayleigh-Ritz projection (SS-RR), which finds the eigenvalues contained in a certain domain using the contour integral. The SS-RR method converts the original PEP to a small projected PEP using the Rayleigh-Ritz projection. However, the SS-RR method suffers from backward instability when the norms of the coefficient matrices of the projected PEP vary widely. To improve the backward stability of the SS-RR method, we combine it with a balancing technique for solving a small projected PEP. We then analyze the backward stability of the SS-RR method. Several numerical examples demonstrate that the SS-RR method with the balancing technique reduces the backward error of eigenpairs of PEP.},
author = {Chen, Hongjia, Imakura, Akira, Sakurai, Tetsuya},
journal = {Applications of Mathematics},
keywords = {SS-RR method; polynomial eigenvalue problem; balancing technique},
language = {eng},
number = {4},
pages = {357-375},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Improving backward stability of Sakurai-Sugiura method with balancing technique in polynomial eigenvalue problem},
url = {http://eudml.org/doc/294107},
volume = {62},
year = {2017},
}
TY - JOUR
AU - Chen, Hongjia
AU - Imakura, Akira
AU - Sakurai, Tetsuya
TI - Improving backward stability of Sakurai-Sugiura method with balancing technique in polynomial eigenvalue problem
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 4
SP - 357
EP - 375
AB - One of the most efficient methods for solving the polynomial eigenvalue problem (PEP) is the Sakurai-Sugiura method with Rayleigh-Ritz projection (SS-RR), which finds the eigenvalues contained in a certain domain using the contour integral. The SS-RR method converts the original PEP to a small projected PEP using the Rayleigh-Ritz projection. However, the SS-RR method suffers from backward instability when the norms of the coefficient matrices of the projected PEP vary widely. To improve the backward stability of the SS-RR method, we combine it with a balancing technique for solving a small projected PEP. We then analyze the backward stability of the SS-RR method. Several numerical examples demonstrate that the SS-RR method with the balancing technique reduces the backward error of eigenpairs of PEP.
LA - eng
KW - SS-RR method; polynomial eigenvalue problem; balancing technique
UR - http://eudml.org/doc/294107
ER -
References
top- Asakura, J., Sakurai, T., Tadano, H., Ikegami, T., Kimura, K., 10.14495/jsiaml.1.52, JSIAM Lett. 1 (2009), 52-55. (2009) Zbl1278.65072MR3042556DOI10.14495/jsiaml.1.52
- Asakura, J., Sakurai, T., Tadano, H., Ikegami, T., Kimura, K., 10.1007/s13160-010-0005-x, Japan J. Ind. Appl. Math. 27 (2010), 73-90. (2010) Zbl1204.65056MR2685138DOI10.1007/s13160-010-0005-x
- Betcke, T., Higham, N. J., Mehrmann, V., Schröder, C., Tisseur, F., 10.1145/2427023.2427024, ACM Trans. Math. Softw. 39 (2013), Paper No. 7, 28 pages. (2013) Zbl1295.65140MR3031626DOI10.1145/2427023.2427024
- Chen, H., Maeda, Y., Imakura, A., Sakurai, T., Tisseur, F., 10.14495/jsiaml.9.17, JSIAM Lett. 9 (2017), 17-20. (2017) MR3637096DOI10.14495/jsiaml.9.17
- Higham, N. J., Li, R., Tisseur, F., 10.1137/060663738, SIAM J. Matrix Anal. Appl. 29 (2007), 1218-1241. (2007) Zbl1159.65042MR2369292DOI10.1137/060663738
- Higham, N. J., Mackey, D. S., Tisseur, F., Garvey, S. D., 10.1002/nme.2076, Int. J. Numer. Methods Eng. 73 (2008), 344-360. (2008) Zbl1166.74009MR2382048DOI10.1002/nme.2076
- Ikegami, T., Sakurai, T., 10.11650/twjm/1500405869, Taiwanese J. Math. 14 (2010), 825-837. (2010) Zbl1198.65071MR2667719DOI10.11650/twjm/1500405869
- Ikegami, T., Sakurai, T., Nagashima, U., 10.1016/j.cam.2009.09.029, J. Comput. Appl. Math. 233 (2010), 1927-1936. (2010) Zbl1185.65061MR2564028DOI10.1016/j.cam.2009.09.029
- Osborne, E. E., 10.1145/321043.321048, J. Assoc. Comput. Math. 7 (1960), 338-345. (1960) Zbl0106.31604MR0143333DOI10.1145/321043.321048
- Parlett, B., Reinsch, C., 10.1007/BF02165404, Numer. Math. 13 (1969), 293-304. (1969) Zbl0184.37703MR1553969DOI10.1007/BF02165404
- Sakurai, T., Sugiura, H., 10.1016/S0377-0427(03)00565-X, J. Comput. Appl. Math. 159 (2003), 119-128. (2003) Zbl1037.65040MR2022322DOI10.1016/S0377-0427(03)00565-X
- Tisseur, F., 10.1016/S0024-3795(99)00063-4, Linear Algebra Appl. 309 (2000), 339-361. (2000) Zbl0955.65027MR1758374DOI10.1016/S0024-3795(99)00063-4
- Tisseur, F., Meerbergen, K., 10.1137/S0036144500381988, SIAM Rev. 43 (2001), 235-286. (2001) Zbl0985.65028MR1861082DOI10.1137/S0036144500381988
- Yokota, S., Sakurai, T., 10.14495/jsiaml.5.41, JSIAM Lett. 5 (2013), 41-44. (2013) MR3035551DOI10.14495/jsiaml.5.41
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.