On the derived length of units in group algebra

Dishari Chaudhuri; Anupam Saikia

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 3, page 855-865
  • ISSN: 0011-4642

Abstract

top
Let G be a finite group G , K a field of characteristic p 17 and let U be the group of units in K G . We show that if the derived length of U does not exceed 4 , then G must be abelian.

How to cite

top

Chaudhuri, Dishari, and Saikia, Anupam. "On the derived length of units in group algebra." Czechoslovak Mathematical Journal 67.3 (2017): 855-865. <http://eudml.org/doc/294110>.

@article{Chaudhuri2017,
abstract = {Let $G$ be a finite group $G$, $K$ a field of characteristic $p\ge 17$ and let $U$ be the group of units in $KG$. We show that if the derived length of $U$ does not exceed $4$, then $G$ must be abelian.},
author = {Chaudhuri, Dishari, Saikia, Anupam},
journal = {Czechoslovak Mathematical Journal},
keywords = {group algebra; group of units; derived subgroup},
language = {eng},
number = {3},
pages = {855-865},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the derived length of units in group algebra},
url = {http://eudml.org/doc/294110},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Chaudhuri, Dishari
AU - Saikia, Anupam
TI - On the derived length of units in group algebra
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 855
EP - 865
AB - Let $G$ be a finite group $G$, $K$ a field of characteristic $p\ge 17$ and let $U$ be the group of units in $KG$. We show that if the derived length of $U$ does not exceed $4$, then $G$ must be abelian.
LA - eng
KW - group algebra; group of units; derived subgroup
UR - http://eudml.org/doc/294110
ER -

References

top
  1. Bagiński, C., 10.1081/AGB-120014675, Commun. Algebra 30 (2002), 4905-4913. (2002) Zbl1017.16022MR1940471DOI10.1081/AGB-120014675
  2. Balogh, Z., Li, Y., 10.1142/S0219498807002624, J. Algebra Appl. 6 (2007), 991-999. (2007) Zbl1168.16016MR2376796DOI10.1142/S0219498807002624
  3. Bateman, J. M., 10.2307/1995832, Trans. Amer. Math. Soc. 157 (1971), 73-86. (1971) Zbl0218.20006MR0276371DOI10.2307/1995832
  4. Bovdi, A., The group of units of a group algebra of characteristic p , Publ. Math. 52 (1998), 193-244. (1998) Zbl0906.16016MR1603359
  5. Bovdi, A., 10.1080/00927870500243213, Commun. Algebra 33 (2005), 3725-3738. (2005) Zbl1082.16036MR2175462DOI10.1080/00927870500243213
  6. Bovdi, A. A., Khripta, I., Finite dimensional group algebras having solvable unit groups, Trans. Science Conf. Uzhgorod State University (1974), 227-233. (1974) 
  7. Bovdi, A. A., Khripta, I. I., 10.1007/BF02412503, Math. Notes 22 (1977), 725-731 English. Russian original translation from Mat. Zametki 22 1977 421-432. (1977) Zbl0363.16004MR0485969DOI10.1007/BF02412503
  8. Catino, F., Spinelli, E., 10.1515/JGT.2010.008, J. Group Theory 13 (2010), 577-588. (2010) Zbl1205.16030MR2661658DOI10.1515/JGT.2010.008
  9. Chandra, H., Sahai, M., 10.1142/S0219498810003938, J. Algebra Appl. 9 (2010), 305-314. (2010) Zbl1209.16028MR2646666DOI10.1142/S0219498810003938
  10. Chandra, H., Sahai, M., 10.5486/PMD.2013.5461, Publ. Math. 82 (2013), 697-708. (2013) Zbl1274.16046MR3066439DOI10.5486/PMD.2013.5461
  11. Chaudhuri, D., Saikia, A., 10.5486/PMD.2015.6012, Publ. Math. 86 (2015), 39-48. (2015) Zbl1347.16021MR3300576DOI10.5486/PMD.2015.6012
  12. Gorenstein, D., Finite Groups, Chelsea Publishing Company, New York (1980). (1980) Zbl0463.20012MR0569209
  13. Kurdics, J., 10.1007/BF01879732, Period. Math. Hung. 32 (1996), 57-64. (1996) Zbl0857.20001MR1407909DOI10.1007/BF01879732
  14. Lee, G. T., Sehgal, S. K., Spinelli, E., 10.1007/s10468-013-9461-8, Algebr. Represent. Theory 17 (2014), 1597-1601. (2014) Zbl1309.16025MR3260911DOI10.1007/s10468-013-9461-8
  15. Motose, K., Ninomiya, Y., On the solvability of unit groups of group rings, Math. J. Okayama Univ. 15 (1972), 209-214. (1972) Zbl0255.20006MR0322033
  16. Motose, K., Tominaga, H., Group rings with solvable unit groups, Math. J. Okayama Univ. 15 (1971), 37-40. (1971) Zbl0253.16012MR0306297
  17. Passman, D. S., 10.1080/00927877708822213, Commun. Algebra 5 (1977), 1119-1162. (1977) Zbl0366.16003MR0457540DOI10.1080/00927877708822213
  18. Sahai, M., 10.5565/PUBLMAT_40296_14, Publ. Mat., Barc. 40 (1996), 443-456. (1996) Zbl0869.16024MR1425630DOI10.5565/PUBLMAT_40296_14
  19. Sahai, M., 10.1090/conm/456/08889, Noncommutative Rings, Group Rings, Diagram Algebras and Their Applications Int. Conf., Chennai 2006, Contemporary Mathematics 456, American Mathematical Society, Providence S. K. Jain (2008), 165-173. (2008) Zbl1158.16017MR2416149DOI10.1090/conm/456/08889
  20. Shalev, A., 10.1016/0022-4049(91)90067-C, J. Pure Appl. Algebra 72 (1991), 295-302. (1991) Zbl0735.16020MR1120695DOI10.1016/0022-4049(91)90067-C
  21. Yoo, W. S., The structure of the radical of the non semisimple group rings, Korean J. Math. 18 (2010), 97-103. (2010) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.