On the derived length of units in group algebra
Dishari Chaudhuri; Anupam Saikia
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 3, page 855-865
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChaudhuri, Dishari, and Saikia, Anupam. "On the derived length of units in group algebra." Czechoslovak Mathematical Journal 67.3 (2017): 855-865. <http://eudml.org/doc/294110>.
@article{Chaudhuri2017,
abstract = {Let $G$ be a finite group $G$, $K$ a field of characteristic $p\ge 17$ and let $U$ be the group of units in $KG$. We show that if the derived length of $U$ does not exceed $4$, then $G$ must be abelian.},
author = {Chaudhuri, Dishari, Saikia, Anupam},
journal = {Czechoslovak Mathematical Journal},
keywords = {group algebra; group of units; derived subgroup},
language = {eng},
number = {3},
pages = {855-865},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the derived length of units in group algebra},
url = {http://eudml.org/doc/294110},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Chaudhuri, Dishari
AU - Saikia, Anupam
TI - On the derived length of units in group algebra
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 855
EP - 865
AB - Let $G$ be a finite group $G$, $K$ a field of characteristic $p\ge 17$ and let $U$ be the group of units in $KG$. We show that if the derived length of $U$ does not exceed $4$, then $G$ must be abelian.
LA - eng
KW - group algebra; group of units; derived subgroup
UR - http://eudml.org/doc/294110
ER -
References
top- Bagiński, C., 10.1081/AGB-120014675, Commun. Algebra 30 (2002), 4905-4913. (2002) Zbl1017.16022MR1940471DOI10.1081/AGB-120014675
- Balogh, Z., Li, Y., 10.1142/S0219498807002624, J. Algebra Appl. 6 (2007), 991-999. (2007) Zbl1168.16016MR2376796DOI10.1142/S0219498807002624
- Bateman, J. M., 10.2307/1995832, Trans. Amer. Math. Soc. 157 (1971), 73-86. (1971) Zbl0218.20006MR0276371DOI10.2307/1995832
- Bovdi, A., The group of units of a group algebra of characteristic , Publ. Math. 52 (1998), 193-244. (1998) Zbl0906.16016MR1603359
- Bovdi, A., 10.1080/00927870500243213, Commun. Algebra 33 (2005), 3725-3738. (2005) Zbl1082.16036MR2175462DOI10.1080/00927870500243213
- Bovdi, A. A., Khripta, I., Finite dimensional group algebras having solvable unit groups, Trans. Science Conf. Uzhgorod State University (1974), 227-233. (1974)
- Bovdi, A. A., Khripta, I. I., 10.1007/BF02412503, Math. Notes 22 (1977), 725-731 English. Russian original translation from Mat. Zametki 22 1977 421-432. (1977) Zbl0363.16004MR0485969DOI10.1007/BF02412503
- Catino, F., Spinelli, E., 10.1515/JGT.2010.008, J. Group Theory 13 (2010), 577-588. (2010) Zbl1205.16030MR2661658DOI10.1515/JGT.2010.008
- Chandra, H., Sahai, M., 10.1142/S0219498810003938, J. Algebra Appl. 9 (2010), 305-314. (2010) Zbl1209.16028MR2646666DOI10.1142/S0219498810003938
- Chandra, H., Sahai, M., 10.5486/PMD.2013.5461, Publ. Math. 82 (2013), 697-708. (2013) Zbl1274.16046MR3066439DOI10.5486/PMD.2013.5461
- Chaudhuri, D., Saikia, A., 10.5486/PMD.2015.6012, Publ. Math. 86 (2015), 39-48. (2015) Zbl1347.16021MR3300576DOI10.5486/PMD.2015.6012
- Gorenstein, D., Finite Groups, Chelsea Publishing Company, New York (1980). (1980) Zbl0463.20012MR0569209
- Kurdics, J., 10.1007/BF01879732, Period. Math. Hung. 32 (1996), 57-64. (1996) Zbl0857.20001MR1407909DOI10.1007/BF01879732
- Lee, G. T., Sehgal, S. K., Spinelli, E., 10.1007/s10468-013-9461-8, Algebr. Represent. Theory 17 (2014), 1597-1601. (2014) Zbl1309.16025MR3260911DOI10.1007/s10468-013-9461-8
- Motose, K., Ninomiya, Y., On the solvability of unit groups of group rings, Math. J. Okayama Univ. 15 (1972), 209-214. (1972) Zbl0255.20006MR0322033
- Motose, K., Tominaga, H., Group rings with solvable unit groups, Math. J. Okayama Univ. 15 (1971), 37-40. (1971) Zbl0253.16012MR0306297
- Passman, D. S., 10.1080/00927877708822213, Commun. Algebra 5 (1977), 1119-1162. (1977) Zbl0366.16003MR0457540DOI10.1080/00927877708822213
- Sahai, M., 10.5565/PUBLMAT_40296_14, Publ. Mat., Barc. 40 (1996), 443-456. (1996) Zbl0869.16024MR1425630DOI10.5565/PUBLMAT_40296_14
- Sahai, M., 10.1090/conm/456/08889, Noncommutative Rings, Group Rings, Diagram Algebras and Their Applications Int. Conf., Chennai 2006, Contemporary Mathematics 456, American Mathematical Society, Providence S. K. Jain (2008), 165-173. (2008) Zbl1158.16017MR2416149DOI10.1090/conm/456/08889
- Shalev, A., 10.1016/0022-4049(91)90067-C, J. Pure Appl. Algebra 72 (1991), 295-302. (1991) Zbl0735.16020MR1120695DOI10.1016/0022-4049(91)90067-C
- Yoo, W. S., The structure of the radical of the non semisimple group rings, Korean J. Math. 18 (2010), 97-103. (2010)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.