On boundary value problems for systems of nonlinear generalized ordinary differential equations
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 3, page 579-608
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAshordia, Malkhaz. "On boundary value problems for systems of nonlinear generalized ordinary differential equations." Czechoslovak Mathematical Journal 67.3 (2017): 579-608. <http://eudml.org/doc/294112>.
@article{Ashordia2017,
abstract = {A general theorem (principle of a priori boundedness) on solvability of the boundary value problem \[ \{\rm d\} x=\{\rm d\} A(t)\cdot f(t,x),\quad h(x)=0 \]
is established, where $f\colon [a,b]\times \mathbb \{R\}^n\rightarrow \mathbb \{R\}^n$ is a vector-function belonging to the Carathéodory class corresponding to the matrix-function $A\colon [a,b]\rightarrow \mathbb \{R\}^\{n\times n\}$ with bounded total variation components, and $h\colon \operatorname\{BV\}_s([a,b],\mathbb \{R\}^n)\rightarrow \mathbb \{R\}^n$ is a continuous operator. Basing on the mentioned principle of a priori boundedness, effective criteria are obtained for the solvability of the system under the condition $x(t_1(x))=\mathcal \{B\}(x)\cdot x(t_2(x))+c_0,$ where $t_i\colon \operatorname\{BV\}_s([a,b],\mathbb \{R\}^\{n\})\rightarrow [a,b]$$(i=1,2)$ and $\mathcal \{B\}\colon \operatorname\{BV\}_s([a,b],\mathbb \{R\}^\{n\})\rightarrow \mathbb \{R\}^n$ are continuous operators, and $c_0\in \mathbb \{R\}^n$.},
author = {Ashordia, Malkhaz},
journal = {Czechoslovak Mathematical Journal},
keywords = {system of nonlinear generalized ordinary differential equations; Kurzweil-Stieltjes integral; general boundary value problem; solvability; principle of a priori boundedness},
language = {eng},
number = {3},
pages = {579-608},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On boundary value problems for systems of nonlinear generalized ordinary differential equations},
url = {http://eudml.org/doc/294112},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Ashordia, Malkhaz
TI - On boundary value problems for systems of nonlinear generalized ordinary differential equations
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 579
EP - 608
AB - A general theorem (principle of a priori boundedness) on solvability of the boundary value problem \[ {\rm d} x={\rm d} A(t)\cdot f(t,x),\quad h(x)=0 \]
is established, where $f\colon [a,b]\times \mathbb {R}^n\rightarrow \mathbb {R}^n$ is a vector-function belonging to the Carathéodory class corresponding to the matrix-function $A\colon [a,b]\rightarrow \mathbb {R}^{n\times n}$ with bounded total variation components, and $h\colon \operatorname{BV}_s([a,b],\mathbb {R}^n)\rightarrow \mathbb {R}^n$ is a continuous operator. Basing on the mentioned principle of a priori boundedness, effective criteria are obtained for the solvability of the system under the condition $x(t_1(x))=\mathcal {B}(x)\cdot x(t_2(x))+c_0,$ where $t_i\colon \operatorname{BV}_s([a,b],\mathbb {R}^{n})\rightarrow [a,b]$$(i=1,2)$ and $\mathcal {B}\colon \operatorname{BV}_s([a,b],\mathbb {R}^{n})\rightarrow \mathbb {R}^n$ are continuous operators, and $c_0\in \mathbb {R}^n$.
LA - eng
KW - system of nonlinear generalized ordinary differential equations; Kurzweil-Stieltjes integral; general boundary value problem; solvability; principle of a priori boundedness
UR - http://eudml.org/doc/294112
ER -
References
top- Ashordiya, M. T., On solvability of quasilinear boundary value problems for systems of generalized ordinary differential equations, Soobshch. Akad. Nauk Gruz. SSR 133 (1989), 261-264 Russian. English summary. (1989) Zbl0686.34022MR1040252
- Ashordia, M., 10.1007/BF02307443, Georgian Math. J. 1 (1994), 343-351. (1994) Zbl0808.34015MR1262572DOI10.1007/BF02307443
- Ashordia, M., On the stability of solutions of a multipoint boundary value problem for a system of generalized ordinary differential equations, Mem. Differ. Equ. Math. Phys. 6 (1995), 1-57. (1995) Zbl0873.34012MR1415807
- Ashordiya, M. T., Criteria for the existence and uniqueness of solutions to nonlinear boundary value problems for systems of generalized ordinary differential equations, Differ. Equations 32 (1996), 442-450. English. Russian original translation from Differ. Uravn. 32 1996 441-449. (1996) Zbl0884.34029MR1436980
- Ashordia, M., Criteria of correctness of linear boundary value problems for systems of generalized ordinary differential equations, Czech. Math. J. 46 (1996), 385-404. (1996) Zbl0879.34037MR1408294
- Ashordiya, M. T., A solvability criterion for a many-point boundary value problem for systems of generalized ordinary differential equations, Differ. Equations 32 (1996), 1300-1308. English. Russian original translation from Differ. Uravn. 32 1996 1303-1311. (1996) Zbl0894.34012MR1601505
- Ashordia, M., 10.1007/BF02259778, Georgian Math. J. 3 (1996), 501-524. (1996) Zbl0876.34021MR1419831DOI10.1007/BF02259778
- Ashordia, M., 10.1023/B:GEOR.0000008135.69001.48, Georgian Math. J. 5 (1998), 1-24. (1998) Zbl0902.34013MR1606414DOI10.1023/B:GEOR.0000008135.69001.48
- Ashordia, M., On the solvability of linear boundary value problems for systems of generalized ordinary differential equations, Funct. Differ. Equ. 7 (2000), 39-64. (2000) Zbl1050.34007MR1941857
- Ashordia, M., On the general and multipoint boundary value problems for linear systems of generalized ordinary differential equations, linear impulse and linear difference systems, Mem. Differ. Equ. Math. Phys. 36 (2005), 1-80. (2005) Zbl1098.34010MR2196660
- Conti, R., 10.1002/mana.1961.3210230304, Math. Nachr. 23 (1961), 161-178 French. (1961) Zbl0107.28803MR0138818DOI10.1002/mana.1961.3210230304
- Groh, J., 10.1215/ijm/1256047720, Ill. J. Math. 24 (1980), 244-263. (1980) Zbl0454.45002MR0575065DOI10.1215/ijm/1256047720
- Hildebrandt, T. H., 10.1215/ijm/1255455257, Ill. J. Math. 3 (1959), 352-373. (1959) Zbl0088.31101MR0105600DOI10.1215/ijm/1255455257
- Kiguradze, I. T., 10.1007/BF01100360, J. Sov. Math. 43 (1988), 2259-2339. English. Russian original translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Novejshie Dostizh. 30 1987 3-103. (1988) Zbl0782.34025MR0925829DOI10.1007/BF01100360
- Kiguradze, I. T., Půža, B., On boundary value problems for functional-differential equations, Mem. Differ. Equ. Math. Phys. 12 (1997), 106-113. (1997) Zbl0909.34054MR1636865
- Kiguradze, I. T., Půža, B., Theorems of Conti-Opial type for nonlinear functional-differential equations, Differ. Equations 33 (1997), 184-193. English. Russian original translation from Differ. Uravn. 33 1997 185-194. (1997) Zbl0908.34046MR1609904
- Kiguradze, I. T., Půža, B., 10.1023/B:GEOR.0000008124.88849.7c, Georgian Math. J. 5 (1998), 251-262. (1998) Zbl0909.34057MR1618364DOI10.1023/B:GEOR.0000008124.88849.7c
- Kiguradze, I. T., Půža, B., Conti-Opial type existence and uniqueness theorems for nonlinear singular boundary value problems, Funct. Differ. Equ. 9 (2002), 405-422. (2002) Zbl1048.34108MR1971619
- Kiguradze, I. T., Půža, B., Boundary Value Problems for Systems of Linear Functional Differential Equations, Folia Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis. Mathematica 12. Brno: Masaryk University (2003). (2003) Zbl1161.34300MR2001509
- Kurzweil, J., Generalized ordinary differential equations and continuous dependence on a parameter, Czech. Math. J. 7 (1957), 418-449. (1957) Zbl0090.30002MR0111875
- Opial, Z., 10.1016/0022-0396(67)90018-6, J. Differ. Equations 3 (1967), 580-594. (1967) Zbl0161.06102MR0216068DOI10.1016/0022-0396(67)90018-6
- Schwabik, Š., 10.1142/1875, Series in Real Analysis 5, World Scientific, Singapore (1992). (1992) Zbl0781.34003MR1200241DOI10.1142/1875
- Schwabik, Š., Tvrdý, M., Boundary value problems for generalized linear differential equations, Czech. Math. J. 29 (1979), 451-477. (1979) Zbl0424.34014MR0536070
- Schwabik, Š., Tvrdý, M., Vejvoda, O., Differential and Integral Equations. Boundary Value Problems and Adjoints, Reidel, Dordrecht, in co-ed. with Academia, Publishing House of the Czechoslovak Academy of Sciences, Praha (1979). (1979) Zbl0417.45001MR0542283
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.