On boundary value problems for systems of nonlinear generalized ordinary differential equations

Malkhaz Ashordia

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 3, page 579-608
  • ISSN: 0011-4642

Abstract

top
A general theorem (principle of a priori boundedness) on solvability of the boundary value problem d x = d A ( t ) · f ( t , x ) , h ( x ) = 0 is established, where f : [ a , b ] × n n is a vector-function belonging to the Carathéodory class corresponding to the matrix-function A : [ a , b ] n × n with bounded total variation components, and h : BV s ( [ a , b ] , n ) n is a continuous operator. Basing on the mentioned principle of a priori boundedness, effective criteria are obtained for the solvability of the system under the condition x ( t 1 ( x ) ) = ( x ) · x ( t 2 ( x ) ) + c 0 , where t i : BV s ( [ a , b ] , n ) [ a , b ] ( i = 1 , 2 ) and : BV s ( [ a , b ] , n ) n are continuous operators, and c 0 n .

How to cite

top

Ashordia, Malkhaz. "On boundary value problems for systems of nonlinear generalized ordinary differential equations." Czechoslovak Mathematical Journal 67.3 (2017): 579-608. <http://eudml.org/doc/294112>.

@article{Ashordia2017,
abstract = {A general theorem (principle of a priori boundedness) on solvability of the boundary value problem \[ \{\rm d\} x=\{\rm d\} A(t)\cdot f(t,x),\quad h(x)=0 \] is established, where $f\colon [a,b]\times \mathbb \{R\}^n\rightarrow \mathbb \{R\}^n$ is a vector-function belonging to the Carathéodory class corresponding to the matrix-function $A\colon [a,b]\rightarrow \mathbb \{R\}^\{n\times n\}$ with bounded total variation components, and $h\colon \operatorname\{BV\}_s([a,b],\mathbb \{R\}^n)\rightarrow \mathbb \{R\}^n$ is a continuous operator. Basing on the mentioned principle of a priori boundedness, effective criteria are obtained for the solvability of the system under the condition $x(t_1(x))=\mathcal \{B\}(x)\cdot x(t_2(x))+c_0,$ where $t_i\colon \operatorname\{BV\}_s([a,b],\mathbb \{R\}^\{n\})\rightarrow [a,b]$$(i=1,2)$ and $\mathcal \{B\}\colon \operatorname\{BV\}_s([a,b],\mathbb \{R\}^\{n\})\rightarrow \mathbb \{R\}^n$ are continuous operators, and $c_0\in \mathbb \{R\}^n$.},
author = {Ashordia, Malkhaz},
journal = {Czechoslovak Mathematical Journal},
keywords = {system of nonlinear generalized ordinary differential equations; Kurzweil-Stieltjes integral; general boundary value problem; solvability; principle of a priori boundedness},
language = {eng},
number = {3},
pages = {579-608},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On boundary value problems for systems of nonlinear generalized ordinary differential equations},
url = {http://eudml.org/doc/294112},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Ashordia, Malkhaz
TI - On boundary value problems for systems of nonlinear generalized ordinary differential equations
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 579
EP - 608
AB - A general theorem (principle of a priori boundedness) on solvability of the boundary value problem \[ {\rm d} x={\rm d} A(t)\cdot f(t,x),\quad h(x)=0 \] is established, where $f\colon [a,b]\times \mathbb {R}^n\rightarrow \mathbb {R}^n$ is a vector-function belonging to the Carathéodory class corresponding to the matrix-function $A\colon [a,b]\rightarrow \mathbb {R}^{n\times n}$ with bounded total variation components, and $h\colon \operatorname{BV}_s([a,b],\mathbb {R}^n)\rightarrow \mathbb {R}^n$ is a continuous operator. Basing on the mentioned principle of a priori boundedness, effective criteria are obtained for the solvability of the system under the condition $x(t_1(x))=\mathcal {B}(x)\cdot x(t_2(x))+c_0,$ where $t_i\colon \operatorname{BV}_s([a,b],\mathbb {R}^{n})\rightarrow [a,b]$$(i=1,2)$ and $\mathcal {B}\colon \operatorname{BV}_s([a,b],\mathbb {R}^{n})\rightarrow \mathbb {R}^n$ are continuous operators, and $c_0\in \mathbb {R}^n$.
LA - eng
KW - system of nonlinear generalized ordinary differential equations; Kurzweil-Stieltjes integral; general boundary value problem; solvability; principle of a priori boundedness
UR - http://eudml.org/doc/294112
ER -

References

top
  1. Ashordiya, M. T., On solvability of quasilinear boundary value problems for systems of generalized ordinary differential equations, Soobshch. Akad. Nauk Gruz. SSR 133 (1989), 261-264 Russian. English summary. (1989) Zbl0686.34022MR1040252
  2. Ashordia, M., 10.1007/BF02307443, Georgian Math. J. 1 (1994), 343-351. (1994) Zbl0808.34015MR1262572DOI10.1007/BF02307443
  3. Ashordia, M., On the stability of solutions of a multipoint boundary value problem for a system of generalized ordinary differential equations, Mem. Differ. Equ. Math. Phys. 6 (1995), 1-57. (1995) Zbl0873.34012MR1415807
  4. Ashordiya, M. T., Criteria for the existence and uniqueness of solutions to nonlinear boundary value problems for systems of generalized ordinary differential equations, Differ. Equations 32 (1996), 442-450. English. Russian original translation from Differ. Uravn. 32 1996 441-449. (1996) Zbl0884.34029MR1436980
  5. Ashordia, M., Criteria of correctness of linear boundary value problems for systems of generalized ordinary differential equations, Czech. Math. J. 46 (1996), 385-404. (1996) Zbl0879.34037MR1408294
  6. Ashordiya, M. T., A solvability criterion for a many-point boundary value problem for systems of generalized ordinary differential equations, Differ. Equations 32 (1996), 1300-1308. English. Russian original translation from Differ. Uravn. 32 1996 1303-1311. (1996) Zbl0894.34012MR1601505
  7. Ashordia, M., 10.1007/BF02259778, Georgian Math. J. 3 (1996), 501-524. (1996) Zbl0876.34021MR1419831DOI10.1007/BF02259778
  8. Ashordia, M., 10.1023/B:GEOR.0000008135.69001.48, Georgian Math. J. 5 (1998), 1-24. (1998) Zbl0902.34013MR1606414DOI10.1023/B:GEOR.0000008135.69001.48
  9. Ashordia, M., On the solvability of linear boundary value problems for systems of generalized ordinary differential equations, Funct. Differ. Equ. 7 (2000), 39-64. (2000) Zbl1050.34007MR1941857
  10. Ashordia, M., On the general and multipoint boundary value problems for linear systems of generalized ordinary differential equations, linear impulse and linear difference systems, Mem. Differ. Equ. Math. Phys. 36 (2005), 1-80. (2005) Zbl1098.34010MR2196660
  11. Conti, R., 10.1002/mana.1961.3210230304, Math. Nachr. 23 (1961), 161-178 French. (1961) Zbl0107.28803MR0138818DOI10.1002/mana.1961.3210230304
  12. Groh, J., 10.1215/ijm/1256047720, Ill. J. Math. 24 (1980), 244-263. (1980) Zbl0454.45002MR0575065DOI10.1215/ijm/1256047720
  13. Hildebrandt, T. H., 10.1215/ijm/1255455257, Ill. J. Math. 3 (1959), 352-373. (1959) Zbl0088.31101MR0105600DOI10.1215/ijm/1255455257
  14. Kiguradze, I. T., 10.1007/BF01100360, J. Sov. Math. 43 (1988), 2259-2339. English. Russian original translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Novejshie Dostizh. 30 1987 3-103. (1988) Zbl0782.34025MR0925829DOI10.1007/BF01100360
  15. Kiguradze, I. T., Půža, B., On boundary value problems for functional-differential equations, Mem. Differ. Equ. Math. Phys. 12 (1997), 106-113. (1997) Zbl0909.34054MR1636865
  16. Kiguradze, I. T., Půža, B., Theorems of Conti-Opial type for nonlinear functional-differential equations, Differ. Equations 33 (1997), 184-193. English. Russian original translation from Differ. Uravn. 33 1997 185-194. (1997) Zbl0908.34046MR1609904
  17. Kiguradze, I. T., Půža, B., 10.1023/B:GEOR.0000008124.88849.7c, Georgian Math. J. 5 (1998), 251-262. (1998) Zbl0909.34057MR1618364DOI10.1023/B:GEOR.0000008124.88849.7c
  18. Kiguradze, I. T., Půža, B., Conti-Opial type existence and uniqueness theorems for nonlinear singular boundary value problems, Funct. Differ. Equ. 9 (2002), 405-422. (2002) Zbl1048.34108MR1971619
  19. Kiguradze, I. T., Půža, B., Boundary Value Problems for Systems of Linear Functional Differential Equations, Folia Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis. Mathematica 12. Brno: Masaryk University (2003). (2003) Zbl1161.34300MR2001509
  20. Kurzweil, J., Generalized ordinary differential equations and continuous dependence on a parameter, Czech. Math. J. 7 (1957), 418-449. (1957) Zbl0090.30002MR0111875
  21. Opial, Z., 10.1016/0022-0396(67)90018-6, J. Differ. Equations 3 (1967), 580-594. (1967) Zbl0161.06102MR0216068DOI10.1016/0022-0396(67)90018-6
  22. Schwabik, Š., 10.1142/1875, Series in Real Analysis 5, World Scientific, Singapore (1992). (1992) Zbl0781.34003MR1200241DOI10.1142/1875
  23. Schwabik, Š., Tvrdý, M., Boundary value problems for generalized linear differential equations, Czech. Math. J. 29 (1979), 451-477. (1979) Zbl0424.34014MR0536070
  24. Schwabik, Š., Tvrdý, M., Vejvoda, O., Differential and Integral Equations. Boundary Value Problems and Adjoints, Reidel, Dordrecht, in co-ed. with Academia, Publishing House of the Czechoslovak Academy of Sciences, Praha (1979). (1979) Zbl0417.45001MR0542283

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.