On star covering properties related to countable compactness and pseudocompactness
Marcelo D. Passos; Heides L. Santana; Samuel G. da Silva
Commentationes Mathematicae Universitatis Carolinae (2017)
- Volume: 58, Issue: 3, page 371-382
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topPassos, Marcelo D., Santana, Heides L., and Silva, Samuel G. da. "On star covering properties related to countable compactness and pseudocompactness." Commentationes Mathematicae Universitatis Carolinae 58.3 (2017): 371-382. <http://eudml.org/doc/294116>.
@article{Passos2017,
abstract = {We prove a number of results on star covering properties which may be regarded as either generalizations or specializations of topological properties related to the ones mentioned in the title of the paper. For instance, we give a new, entirely combinatorial proof of the fact that $\Psi $-spaces constructed from infinite almost disjoint families are not star-compact. By going a little further we conclude that if $X$ is a star-compact space within a certain class, then $X$ is neither first countable nor separable. We also show that if a topological space is pseudonormal and has countable extent, then its Alexandroff duplicate satisfies property $(a)$. A number of problems and questions are also presented.},
author = {Passos, Marcelo D., Santana, Heides L., Silva, Samuel G. da},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {star-compact spaces; spaces star determined by a finite number of convergent sequences; $(a)$-spaces; selectively $(a)$-spaces},
language = {eng},
number = {3},
pages = {371-382},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On star covering properties related to countable compactness and pseudocompactness},
url = {http://eudml.org/doc/294116},
volume = {58},
year = {2017},
}
TY - JOUR
AU - Passos, Marcelo D.
AU - Santana, Heides L.
AU - Silva, Samuel G. da
TI - On star covering properties related to countable compactness and pseudocompactness
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 3
SP - 371
EP - 382
AB - We prove a number of results on star covering properties which may be regarded as either generalizations or specializations of topological properties related to the ones mentioned in the title of the paper. For instance, we give a new, entirely combinatorial proof of the fact that $\Psi $-spaces constructed from infinite almost disjoint families are not star-compact. By going a little further we conclude that if $X$ is a star-compact space within a certain class, then $X$ is neither first countable nor separable. We also show that if a topological space is pseudonormal and has countable extent, then its Alexandroff duplicate satisfies property $(a)$. A number of problems and questions are also presented.
LA - eng
KW - star-compact spaces; spaces star determined by a finite number of convergent sequences; $(a)$-spaces; selectively $(a)$-spaces
UR - http://eudml.org/doc/294116
ER -
References
top- Bella A., Bonanzinga M., Matveev M., 10.1016/j.topol.2008.12.029, Topology Appl. 156 (2009), no. 7, 1241–1252. Zbl1197.54038MR2502000DOI10.1016/j.topol.2008.12.029
- Bella A., Matveev M., Spadaro S., 10.1016/j.topol.2011.09.005, Topology Appl. 159 (2012), no. 1, 253–271. Zbl1239.54014MR2852970DOI10.1016/j.topol.2011.09.005
- Caserta A., Di Maio G., Kočinac Lj.D.R., Versions of properties and , Topology Appl. 158 (2011), no. 12, 1360–1368. Zbl1229.54029MR2812488
- Comfort W.W., Cofinal families in certain function spaces, Commen. Math. Univ. Carolin. 29 (1988), no. 4, 665–675. Zbl0666.54002MR0982784
- van Douwen E.K., The integers and topology, in K. Kunen, J. Vaughan (Eds.), Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp. 111–167. Zbl0561.54004MR0776622
- van Douwen E.K., Reed G.M., Roscoe A.W., Tree I.J., 10.1016/0166-8641(91)90077-Y, Topology Appl. 39 (1991), no. 1, 71–103. Zbl0743.54007MR1103993DOI10.1016/0166-8641(91)90077-Y
- Engelking R., General Topology, second edition, Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
- Hodel R., Cardinal functions, I, in Handbook of Set Theoretic Topology (eds. K. Kunen and J.E. Vaughan), North Holland, Amsterdam, 1984, pp. 1–61. Zbl0559.54003MR0776620
- Just W., Matveev M.V., Szeptycki P.J., Some results on property , Topology Appl. 100 (2000), no. 1, 67–83. Zbl0944.54014MR1731705
- Kočinac Lj.D.R., Star selection principles: a survey, Khayyam J. Math. 1 (2015), no. 1, 82–106. Zbl1337.54001MR3353479
- Matveev M.V., 10.1016/0166-8641(94)90074-4, Topology Appl. 58 (1994), no. 1, 81–92. Zbl0801.54021MR1280711DOI10.1016/0166-8641(94)90074-4
- Matveev M.V., Some questions on property , Questions Answers Gen. Topology 15 (1997), no. 2, 103–111. Zbl1002.54016MR1472172
- Matveev M.V., A survey on star covering properties, Topology Atlas, Preprint 330, 1998.
- van Mill J., Tkachuk V.V., Wilson R.G., 10.1016/j.topol.2006.03.029, Topology Appl. 154 (2007), no. 10, 2127–2134. Zbl1131.54022MR2324924DOI10.1016/j.topol.2006.03.029
- Morgan C.J.G., da Silva S.G., Selectively -spaces from almost disjoint families are necessarily countable under a certain parametrized weak diamond principle, Houston J. Math. 42 (2016), no. 3, 1031–1046. Zbl1371.54142MR3570723
- Mrówka S., 10.4064/fm-41-1-105-106, Fund. Math. 41 (1954), 105–106. Zbl0055.41304MR0063650DOI10.4064/fm-41-1-105-106
- Santana H.L., Classes de espaços definidas por estrelas e atribuiçoes de vizinhanças abertas, MsC Dissertation (in Portuguese), UFBA, 2014, 89 pp.
- da Silva S.G., 10.1007/s10474-013-0372-2, Acta Math. Hungar. 142 (2014), no. 2, 420–432. Zbl1299.54046MR3165490DOI10.1007/s10474-013-0372-2
- da Silva S.G., 10.4064/cm141-2-5, Colloq. Math. 141 (2015), no. 2, 199–208. Zbl1344.54003MR3404263DOI10.4064/cm141-2-5
- Song Y., 10.4134/CKMS.2012.27.1.201, Commun. Korean Math. Soc. 27 (2012), no. 1, 201–205. Zbl1234.54035MR2919026DOI10.4134/CKMS.2012.27.1.201
- Song Y., 10.1016/j.topol.2013.02.003, Topology Appl. 160 (2013), no. 6, 806–811. Zbl1262.54006MR3028613DOI10.1016/j.topol.2013.02.003
- Szeptycki P.J., Vaughan J.E., Almost disjoint families and property , Fund. Math. 158 (1998), no. 3, 229–240. Zbl0933.54005MR1663330
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.