Some fixed point theorems in generating spaces of quasi-metric family

M.H.M. Rashid

Archivum Mathematicum (2017)

  • Volume: 053, Issue: 3, page 161-177
  • ISSN: 0044-8753

Abstract

top
The aim of this paper is to introduce the concepts of compatible mappings and compatible mappings of type ( R ) in non-Archimedean Menger probabilistic normed spaces and to study the existence problems of common fixed points for compatible mappings of type ( R ) , also, we give an applications by using the main theorems.

How to cite

top

Rashid, M.H.M.. "Some fixed point theorems in generating spaces of quasi-metric family." Archivum Mathematicum 053.3 (2017): 161-177. <http://eudml.org/doc/294117>.

@article{Rashid2017,
abstract = {The aim of this paper is to introduce the concepts of compatible mappings and compatible mappings of type $(R)$ in non-Archimedean Menger probabilistic normed spaces and to study the existence problems of common fixed points for compatible mappings of type $(R)$, also, we give an applications by using the main theorems.},
author = {Rashid, M.H.M.},
journal = {Archivum Mathematicum},
keywords = {fixed point; compatible mappings; non-Archimedean Menger probabilistic normed spaces},
language = {eng},
number = {3},
pages = {161-177},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Some fixed point theorems in generating spaces of quasi-metric family},
url = {http://eudml.org/doc/294117},
volume = {053},
year = {2017},
}

TY - JOUR
AU - Rashid, M.H.M.
TI - Some fixed point theorems in generating spaces of quasi-metric family
JO - Archivum Mathematicum
PY - 2017
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 053
IS - 3
SP - 161
EP - 177
AB - The aim of this paper is to introduce the concepts of compatible mappings and compatible mappings of type $(R)$ in non-Archimedean Menger probabilistic normed spaces and to study the existence problems of common fixed points for compatible mappings of type $(R)$, also, we give an applications by using the main theorems.
LA - eng
KW - fixed point; compatible mappings; non-Archimedean Menger probabilistic normed spaces
UR - http://eudml.org/doc/294117
ER -

References

top
  1. Chang, S.S., Fixed point theorem in problabilistic metric spaces with applications, Scientia Sinica (Series A) 26 (1983), 1144–1155. (1983) MR0747108
  2. Chang, S.S., 10.1007/BF02564846, Acta Math. Sinica (N.S.) 1 (4) (1985), 366–377. (1985) MR0867910DOI10.1007/BF02564846
  3. Chang, S.S., Xiang, S.W., Topological structure and metrization problem of probabilistic metric spaces and application, J. Qufu Norm. Univ. Nat. Sci. Ed. 16 (3) (1990), 1–8. (1990) MR1078778
  4. Cho, Y.J., Park, K.S., Chang, S.S., 10.1155/S0161171296000348, Internat. J. Math. Math. Sci. 19 (2) (1996), 243–252. (1996) Zbl0843.47033MR1375985DOI10.1155/S0161171296000348
  5. Drossos, C.A., Stochastic Menger spaces and convergence in probability, Rev. Roumaine Math. Pures Appl. 22 (1977), 1069–1076. (1977) Zbl0372.60014MR0467865
  6. Fan, J.X., On the generalizations of Ekeland’s vartional principle and Caristi’s fixed point theorem, The 6th National Conference on Fixed point Theory Variational Inequalities and Probabilistic Metric Spaces Theory, Qingdao, China, 1993. (1993) 
  7. He, P.J., 10.1016/0165-0114(92)90157-Y, Fuzzy Sets and Systems 45 (1992), 389–394. (1992) Zbl0754.54005MR1154203DOI10.1016/0165-0114(92)90157-Y
  8. Hegedus, M., Szilagyi, T., Equivalence conditions and a new fixed point theorem in the theory of contraction mappings, Math. Japon. 25 (1) (1980), 147–157. (1980) MR0571276
  9. Jungck, G., 10.1155/S0161171286000935, Internat. J. Math. Math. Sci. 9 (1986), 771–779. (1986) MR0870534DOI10.1155/S0161171286000935
  10. Koireng, M.M., Ningombam, L., Rohen, Y., Common fixed points of compatible mappings of type ( R ) , Gen. Math. Notes 10 (1) (2012), 58–62. (2012) 
  11. Menger, K., 10.1073/pnas.28.12.535, Proc. Nat. Acad. Sci. USA 28 (1942), 535–537. (1942) Zbl0063.03886MR0007576DOI10.1073/pnas.28.12.535
  12. Rohen, Y., Singh, M.R., Shambhu, L., Common fixed points of compatible mapping of type ( C ) in Banach spaces, Proc. Math. Soc. 20 (2004), 77–87. (2004) 
  13. Schweizer, B., Sklar, A., 10.2140/pjm.1960.10.313, Pacific J. Math. 10 (1960), 313–334. (1960) Zbl0096.33203MR0115153DOI10.2140/pjm.1960.10.313
  14. Schweizer, B., Sklar, A., Probabilistic metric spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing Co., New York, 1983. (1983) Zbl0546.60010MR0790314
  15. Singh, B., Chauhan, M.S., On common fixed points of four mappings, Bull. Calcutta Math. Soc. 88 (1996), 451–456. (1996) Zbl0904.54031MR1630261
  16. Singh, S.P., Meade, B.A., 10.1017/S000497270002298X, Bull. Austral. Math. Soc. 16 (1977), 49–53. (1977) Zbl0351.54040MR0438318DOI10.1017/S000497270002298X
  17. Tan, N.X., 10.1002/mana.19861290119, Math. Nachr. 129 (1986), 205–218. (1986) Zbl0603.54049MR0864635DOI10.1002/mana.19861290119

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.