A Note on Transcendental Power Series Mapping the Set of Rational Numbers into Itself

Diego Marques; Elaine Silva

Communications in Mathematics (2017)

  • Volume: 25, Issue: 1, page 1-4
  • ISSN: 1804-1388

Abstract

top
In this note, we prove that there is no transcendental entire function f ( z ) [ [ z ] ] such that f ( ) and den f ( p / q ) = F ( q ) , for all sufficiently large q , where F ( z ) [ z ] .

How to cite

top

Marques, Diego, and Silva, Elaine. "A Note on Transcendental Power Series Mapping the Set of Rational Numbers into Itself." Communications in Mathematics 25.1 (2017): 1-4. <http://eudml.org/doc/294125>.

@article{Marques2017,
abstract = {In this note, we prove that there is no transcendental entire function $f(z)\in \mathbb \{Q\} [[z]]$ such that $f(\mathbb \{Q\} )\subseteq \mathbb \{Q\}$ and $\mathop \{\rm den\} f(p/q)=F(q)$, for all sufficiently large $q$, where $F(z)\in \mathbb \{Z\} [z]$.},
author = {Marques, Diego, Silva, Elaine},
journal = {Communications in Mathematics},
keywords = {Liouville numbers; Mahler's question; power series},
language = {eng},
number = {1},
pages = {1-4},
publisher = {University of Ostrava},
title = {A Note on Transcendental Power Series Mapping the Set of Rational Numbers into Itself},
url = {http://eudml.org/doc/294125},
volume = {25},
year = {2017},
}

TY - JOUR
AU - Marques, Diego
AU - Silva, Elaine
TI - A Note on Transcendental Power Series Mapping the Set of Rational Numbers into Itself
JO - Communications in Mathematics
PY - 2017
PB - University of Ostrava
VL - 25
IS - 1
SP - 1
EP - 4
AB - In this note, we prove that there is no transcendental entire function $f(z)\in \mathbb {Q} [[z]]$ such that $f(\mathbb {Q} )\subseteq \mathbb {Q}$ and $\mathop {\rm den} f(p/q)=F(q)$, for all sufficiently large $q$, where $F(z)\in \mathbb {Z} [z]$.
LA - eng
KW - Liouville numbers; Mahler's question; power series
UR - http://eudml.org/doc/294125
ER -

References

top
  1. Mahler, K., 10.1017/S1446788700025866, J. Austral. Math. Soc., 5, 1965, 56-64, (1965) Zbl0148.27703MR0190094DOI10.1017/S1446788700025866
  2. Mahler, K., 10.1017/S0004972700021316, Bull. Austral. Math. Soc., 29, 1984, 101-108, (1984) Zbl0517.10001MR0732177DOI10.1017/S0004972700021316
  3. Maillet, E., Introduction à la Théorie des Nombres Transcendants et des Propriétés Arithmétiques des Fonctions, 1906, Gauthier-Villars, Paris, (1906) 
  4. Marques, D., Moreira, C.G., 10.1017/S0004972714000471, Bull. Austral. Math. Soc., 91, 2015, 29-33, (2015) Zbl1308.11069MR3294255DOI10.1017/S0004972714000471
  5. Marques, D., Ramirez, J., 10.3792/pjaa.91.25, Proc. Japan Acad. Ser. A Math. Sci., 91, 2015, 25-28, (2015) Zbl1311.11067MR3310967DOI10.3792/pjaa.91.25
  6. Marques, D., Ramirez, J., Silva, E., A note on lacunary power series with rational coefficients, Bull. Austral. Math. Soc., 93, 2015, 1-3, (2015) MR3491477
  7. Marques, D., Schleischitz, J., 10.1017/S1446788715000415, J. Austral. Math. Soc., 100, 2016, 86-107, (2016) Zbl1335.11053MR3436773DOI10.1017/S1446788715000415

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.