A Note on Transcendental Power Series Mapping the Set of Rational Numbers into Itself
Communications in Mathematics (2017)
- Volume: 25, Issue: 1, page 1-4
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topMarques, Diego, and Silva, Elaine. "A Note on Transcendental Power Series Mapping the Set of Rational Numbers into Itself." Communications in Mathematics 25.1 (2017): 1-4. <http://eudml.org/doc/294125>.
@article{Marques2017,
abstract = {In this note, we prove that there is no transcendental entire function $f(z)\in \mathbb \{Q\} [[z]]$ such that $f(\mathbb \{Q\} )\subseteq \mathbb \{Q\}$ and $\mathop \{\rm den\} f(p/q)=F(q)$, for all sufficiently large $q$, where $F(z)\in \mathbb \{Z\} [z]$.},
author = {Marques, Diego, Silva, Elaine},
journal = {Communications in Mathematics},
keywords = {Liouville numbers; Mahler's question; power series},
language = {eng},
number = {1},
pages = {1-4},
publisher = {University of Ostrava},
title = {A Note on Transcendental Power Series Mapping the Set of Rational Numbers into Itself},
url = {http://eudml.org/doc/294125},
volume = {25},
year = {2017},
}
TY - JOUR
AU - Marques, Diego
AU - Silva, Elaine
TI - A Note on Transcendental Power Series Mapping the Set of Rational Numbers into Itself
JO - Communications in Mathematics
PY - 2017
PB - University of Ostrava
VL - 25
IS - 1
SP - 1
EP - 4
AB - In this note, we prove that there is no transcendental entire function $f(z)\in \mathbb {Q} [[z]]$ such that $f(\mathbb {Q} )\subseteq \mathbb {Q}$ and $\mathop {\rm den} f(p/q)=F(q)$, for all sufficiently large $q$, where $F(z)\in \mathbb {Z} [z]$.
LA - eng
KW - Liouville numbers; Mahler's question; power series
UR - http://eudml.org/doc/294125
ER -
References
top- Mahler, K., 10.1017/S1446788700025866, J. Austral. Math. Soc., 5, 1965, 56-64, (1965) Zbl0148.27703MR0190094DOI10.1017/S1446788700025866
- Mahler, K., 10.1017/S0004972700021316, Bull. Austral. Math. Soc., 29, 1984, 101-108, (1984) Zbl0517.10001MR0732177DOI10.1017/S0004972700021316
- Maillet, E., Introduction à la Théorie des Nombres Transcendants et des Propriétés Arithmétiques des Fonctions, 1906, Gauthier-Villars, Paris, (1906)
- Marques, D., Moreira, C.G., 10.1017/S0004972714000471, Bull. Austral. Math. Soc., 91, 2015, 29-33, (2015) Zbl1308.11069MR3294255DOI10.1017/S0004972714000471
- Marques, D., Ramirez, J., 10.3792/pjaa.91.25, Proc. Japan Acad. Ser. A Math. Sci., 91, 2015, 25-28, (2015) Zbl1311.11067MR3310967DOI10.3792/pjaa.91.25
- Marques, D., Ramirez, J., Silva, E., A note on lacunary power series with rational coefficients, Bull. Austral. Math. Soc., 93, 2015, 1-3, (2015) MR3491477
- Marques, D., Schleischitz, J., 10.1017/S1446788715000415, J. Austral. Math. Soc., 100, 2016, 86-107, (2016) Zbl1335.11053MR3436773DOI10.1017/S1446788715000415
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.