Disjoint hypercyclic powers of weighted translations on groups
Liang Zhang; Hui-Qiang Lu; Xiao-Mei Fu; Ze-Hua Zhou
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 3, page 839-853
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhang, Liang, et al. "Disjoint hypercyclic powers of weighted translations on groups." Czechoslovak Mathematical Journal 67.3 (2017): 839-853. <http://eudml.org/doc/294134>.
@article{Zhang2017,
abstract = {Let $G$ be a locally compact group and let $1 \le p < \infty .$ Recently, Chen et al. characterized hypercyclic, supercyclic and chaotic weighted translations on locally compact groups and their homogeneous spaces. There has been an increasing interest in studying the disjoint hypercyclicity acting on various spaces of holomorphic functions. In this note, we will study disjoint hypercyclic and disjoint supercyclic powers of weighted translation operators on the Lebesgue space $L^p(G)$ in terms of the weights. Sufficient and necessary conditions for disjoint hypercyclic and disjoint supercyclic powers of weighted translations generated by aperiodic elements on groups will be given.},
author = {Zhang, Liang, Lu, Hui-Qiang, Fu, Xiao-Mei, Zhou, Ze-Hua},
journal = {Czechoslovak Mathematical Journal},
keywords = {disjoint hypercyclic powers of weighted translations; aperiodic element; locally compact group},
language = {eng},
number = {3},
pages = {839-853},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Disjoint hypercyclic powers of weighted translations on groups},
url = {http://eudml.org/doc/294134},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Zhang, Liang
AU - Lu, Hui-Qiang
AU - Fu, Xiao-Mei
AU - Zhou, Ze-Hua
TI - Disjoint hypercyclic powers of weighted translations on groups
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 839
EP - 853
AB - Let $G$ be a locally compact group and let $1 \le p < \infty .$ Recently, Chen et al. characterized hypercyclic, supercyclic and chaotic weighted translations on locally compact groups and their homogeneous spaces. There has been an increasing interest in studying the disjoint hypercyclicity acting on various spaces of holomorphic functions. In this note, we will study disjoint hypercyclic and disjoint supercyclic powers of weighted translation operators on the Lebesgue space $L^p(G)$ in terms of the weights. Sufficient and necessary conditions for disjoint hypercyclic and disjoint supercyclic powers of weighted translations generated by aperiodic elements on groups will be given.
LA - eng
KW - disjoint hypercyclic powers of weighted translations; aperiodic element; locally compact group
UR - http://eudml.org/doc/294134
ER -
References
top- Bayart, F., Matheron, E., 10.1017/CBO9780511581113, Cambridge Tracts in Mathematics 179, Cambridge University Press, Cambridge (2009). (2009) Zbl1187.47001MR2533318DOI10.1017/CBO9780511581113
- Bernal-González, L., 10.4064/sm182-2-2, Stud. Math. 182 (2007), 113-131. (2007) Zbl1134.47006MR2338480DOI10.4064/sm182-2-2
- Bès, J., Martin, Ö., Peris, A., 10.1016/j.jmaa.2011.03.072, J. Math. Anal. Appl. 381 (2011), 843-856. (2011) Zbl1235.47012MR2802119DOI10.1016/j.jmaa.2011.03.072
- Bès, J., Martin, Ö., Peris, A., Shkarin, S., 10.1016/j.jfa.2012.05.018, J. Funct. Anal. 263 (2012), 1283-1322. (2012) Zbl1266.47013MR2943730DOI10.1016/j.jfa.2012.05.018
- Bès, J., Martin, Ö., Sanders, R., 10.7900/jot.2012aug20.1970, J. Oper. Theory 72 (2014), 15-40. (2014) Zbl1318.47010MR3246979DOI10.7900/jot.2012aug20.1970
- Bès, J., Peris, A., 10.1016/j.jmaa.2007.02.043, J. Math. Anal. Appl. 336 (2007), 297-315. (2007) Zbl1129.47007MR2348507DOI10.1016/j.jmaa.2007.02.043
- Chen, C. C., 10.11650/twjm/1500406799, Taiwanese J. Math. 16 (2012), 1815-1827. (2012) Zbl1275.47020MR2970687DOI10.11650/twjm/1500406799
- Chen, C. C., Chu, C. H., 10.1090/S0002-9939-09-09889-X, Proc. Am. Math. Soc. 137 (2009), 2709-2718. (2009) Zbl1177.47013MR2497483DOI10.1090/S0002-9939-09-09889-X
- Chen, C. C., Chu, C. H., 10.1090/S0002-9939-2011-10718-4, Proc. Am. Math. Soc. 139 (2011), 2839-2846. (2011) Zbl1221.47017MR2801625DOI10.1090/S0002-9939-2011-10718-4
- Grosse-Erdmann, K.-G., Manguillot, A. Peris, 10.1007/978-1-4471-2170-1, Universitext, Springer, London (2011). (2011) Zbl1246.47004MR2919812DOI10.1007/978-1-4471-2170-1
- Grosser, S., Moskowitz, M., 10.2307/1994651, Trans. Am. Math. Soc. 127 (1967), 317-340. (1967) Zbl0145.03305MR0209394DOI10.2307/1994651
- Han, S.-A., Liang, Y.-X., 10.1007/s13348-015-0136-0, Collect. Math. 67 (2016), 347-356. (2016) Zbl06628127MR3536047DOI10.1007/s13348-015-0136-0
- Hewitt, E., Ross, K. A., Abstract Harmonic Analysis. Vol. I: Structure of Topological Groups, Integration Theory, Group Representations, Grundlehren der Mathematischen Wissenschaften 115, A Series of Comprehensive Studies in Mathematics, Springer, Berlin (1979). (1979) Zbl0416.43001MR0551496
- Liang, Y. X., Xia, L., 10.1007/s13348-016-0164-4, Collect. Math. 68 (2017), 265-278. (2017) Zbl06748546MR3633062DOI10.1007/s13348-016-0164-4
- Martin, "O., Disjoint Hypercyclic and Supercyclic Composition Operators, PhD Thesis, Bowling Green State University, Bowling Green (2010). (2010) Zbl1300.47003MR2782297
- Salas, H. N., 10.1016/j.jmaa.2010.09.003, J. Math. Anal. Appl. 374 (2011), 106-117. (2011) Zbl1210.47024MR2726191DOI10.1016/j.jmaa.2010.09.003
- Shkarin, S., 10.1016/j.jmaa.2010.01.005, J. Math. Anal. Appl. 367 (2010), 713-715. (2010) Zbl1196.47006MR2607296DOI10.1016/j.jmaa.2010.01.005
- Zhang, L., Zhou, Z.-H., 10.1016/j.jmaa.2014.04.007, J. Math. Anal. Appl. 418 (2014), 336-343. (2014) Zbl1318.47017MR3198882DOI10.1016/j.jmaa.2014.04.007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.