Essential norm and a new characterization of weighted composition operators from weighted Bergman spaces and Hardy spaces into the Bloch space
Songxiao Li; Ruishen Qian; Jizhen Zhou
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 3, page 629-643
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLi, Songxiao, Qian, Ruishen, and Zhou, Jizhen. "Essential norm and a new characterization of weighted composition operators from weighted Bergman spaces and Hardy spaces into the Bloch space." Czechoslovak Mathematical Journal 67.3 (2017): 629-643. <http://eudml.org/doc/294142>.
@article{Li2017,
abstract = {In this paper, we give some estimates for the essential norm and a new characterization for the boundedness and compactness of weighted composition operators from weighted Bergman spaces and Hardy spaces to the Bloch space.},
author = {Li, Songxiao, Qian, Ruishen, Zhou, Jizhen},
journal = {Czechoslovak Mathematical Journal},
keywords = {Bloch space; weighted Bergman space; Hardy space; essential norm; weighted composition operator},
language = {eng},
number = {3},
pages = {629-643},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Essential norm and a new characterization of weighted composition operators from weighted Bergman spaces and Hardy spaces into the Bloch space},
url = {http://eudml.org/doc/294142},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Li, Songxiao
AU - Qian, Ruishen
AU - Zhou, Jizhen
TI - Essential norm and a new characterization of weighted composition operators from weighted Bergman spaces and Hardy spaces into the Bloch space
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 629
EP - 643
AB - In this paper, we give some estimates for the essential norm and a new characterization for the boundedness and compactness of weighted composition operators from weighted Bergman spaces and Hardy spaces to the Bloch space.
LA - eng
KW - Bloch space; weighted Bergman space; Hardy space; essential norm; weighted composition operator
UR - http://eudml.org/doc/294142
ER -
References
top- Castillo, R. E., Ramos-Fernández, J. C., Rojas, E. M., 10.1155/2013/817278, J. Funct. Spaces Appl. 2013 (2013), Article ID 817278, 5 pages. (2013) Zbl06281096MR3111830DOI10.1155/2013/817278
- Colonna, F., 10.2478/s11533-012-0097-4, Cent. Eur. J. Math. 11 (2013), 55-73. (2013) Zbl1279.47041MR2988782DOI10.2478/s11533-012-0097-4
- Cowen, C. C., MacCluer, B. D., Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton (1995). (1995) Zbl0873.47017MR1397026
- Esmaeili, K., Lindström, M., 10.1007/s00020-013-2038-4, Integral Equations Oper. Theory 75 (2013), 473-490. (2013) Zbl1306.47036MR3032664DOI10.1007/s00020-013-2038-4
- Hyvärinen, O., Kemppainen, M., Lindström, M., Rautio, A., Saukko, E., 10.1007/s00020-011-1919-7, Integral Equations Oper. Theory 72 (2012), 151-157. (2012) Zbl1252.47026MR2872471DOI10.1007/s00020-011-1919-7
- Hyvärinen, O., Lindström, M., 10.1016/j.jmaa.2012.03.059, J. Math. Anal. Appl. 393 (2012), 38-44. (2012) Zbl1267.47040MR2921646DOI10.1016/j.jmaa.2012.03.059
- Li, S., Stević, S., 10.1007/s12044-007-0032-y, Proc. Indian Acad. Sci., Math. Sci. 117 (2007), 371-385. (2007) Zbl1130.47016MR2352056DOI10.1007/s12044-007-0032-y
- Li, S., Stević, S., 10.1016/j.jmaa.2007.06.013, J. Math. Anal. Appl. 338 (2008), 1282-1295. (2008) Zbl1135.47021MR2386496DOI10.1016/j.jmaa.2007.06.013
- Li, S., Stević, S., 10.1016/j.amc.2008.10.006, Appl. Math. Comput. 206 (2008), 825-831. (2008) Zbl1215.47022MR2483058DOI10.1016/j.amc.2008.10.006
- Liang, Y.-X., Zhou, Z.-H., 10.1007/s00013-013-0499-y, Arch. Math. 100 (2013), 347-360. (2013) Zbl1276.47041MR3044119DOI10.1007/s00013-013-0499-y
- Lou, Z., 10.1524/anly.2003.23.1.81,, Analysis Münich 23 (2003), 81-95. (2003) Zbl1058.47024MR1983976DOI10.1524/anly.2003.23.1.81,
- MacCluer, B. D., Zhao, R., 10.1216/rmjm/1181075473, Rocky Mountain J. Math. 33 (2003), 1437-1458. (2003) Zbl1061.30023MR2052498DOI10.1216/rmjm/1181075473
- Madigan, K., Matheson, A., 10.1090/S0002-9947-1995-1273508-X, Trans. Am. Math. Soc. 347 (1995), 2679-2687. (1995) Zbl0826.47023MR1273508DOI10.1090/S0002-9947-1995-1273508-X
- Manhas, J. S., Zhao, R., 10.1016/j.jmaa.2011.11.039, J. Math. Anal. Appl. 389 (2012), 32-47. (2012) Zbl1267.47042MR2876478DOI10.1016/j.jmaa.2011.11.039
- Montes-Rodríguez, A., 10.1112/S0024610700008875, J. Lond. Math. Soc., II. Ser. 61 (2000), 872-884. (2000) Zbl0959.47016MR1766111DOI10.1112/S0024610700008875
- Ohno, S., Stroethoff, K., Zhao, R., 10.1216/rmjm/1181069993, Rocky Mt. J. Math. 33 (2003), 191-215. (2003) Zbl1042.47018MR1994487DOI10.1216/rmjm/1181069993
- Stević, S., 10.1016/j.amc.2010.05.014, Appl. Math. Comput. 216 (2010), 3634-3641. (2010) Zbl1195.30073MR2661728DOI10.1016/j.amc.2010.05.014
- Stević, S., 10.1016/j.amc.2011.10.004, Appl. Math. Comput. 218 (2011), 4312-4316. (2011) Zbl1244.30082MR2862100DOI10.1016/j.amc.2011.10.004
- Tjani, M., Compact Composition Operators on Some Möbius Invariant Banach Spaces, PhD Thesis, Michigan State University, Michigan (1996). (1996) MR2695395
- Tjani, M., 10.1090/S0002-9947-03-03354-3, Trans. Am. Math. Soc. 355 (2003), 4683-4698. (2003) Zbl1045.47020MR1990767DOI10.1090/S0002-9947-03-03354-3
- Wulan, H., Zheng, D., Zhu, K., 10.1090/S0002-9939-09-09961-4, Proc. Am. Math. Soc. 137 (2009), 3861-3868. (2009) Zbl1194.47038MR2529895DOI10.1090/S0002-9939-09-09961-4
- Xiong, C., 10.1017/S0004972700034511, Bull. Aust. Math. Soc. 70 (2004), 293-299. (2004) Zbl1062.30038MR2094297DOI10.1017/S0004972700034511
- Yang, W., 10.1016/j.amc.2011.10.062, Appl. Math. Comput. 218 (2012), 4967-4972. (2012) Zbl1244.30083MR2870021DOI10.1016/j.amc.2011.10.062
- Yang, W., Zhu, X., 10.11650/twjm/1500406662, Taiwanese J. Math. 16 (2012), 869-883. (2012) Zbl1268.47034MR2917244DOI10.11650/twjm/1500406662
- Zhao, R., 10.1090/S0002-9939-10-10285-8, Proc. Am. Math. Soc. 138 (2010), 2537-2546. (2010) Zbl1190.47028MR2607883DOI10.1090/S0002-9939-10-10285-8
- Zhu, K., Operator Theory in Function Spaces, Pure and Applied Mathematics 139, Marcel Dekker, New York (1990). (1990) Zbl0706.47019MR1074007
- Zhu, X., 10.1186/s13660-015-0580-0, J. Inequal. Appl. (electronic only) 2015 (2015), Paper No. 59, 9 pages. (2015) Zbl1309.47027MR3313862DOI10.1186/s13660-015-0580-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.