Duality for Hilbert algebras with supremum: An application
Mathematica Bohemica (2017)
- Volume: 142, Issue: 3, page 263-276
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topGaitan, Hernando. "Duality for Hilbert algebras with supremum: An application." Mathematica Bohemica 142.3 (2017): 263-276. <http://eudml.org/doc/294143>.
@article{Gaitan2017,
abstract = {We modify slightly the definition of $H$-partial functions given by Celani and Montangie (2012); these partial functions are the morphisms in the category of $H^\vee $-space and this category is the dual category of the category with objects the Hilbert algebras with supremum and morphisms, the algebraic homomorphisms. As an application we show that finite pure Hilbert algebras with supremum are determined by the monoid of their endomorphisms.},
author = {Gaitan, Hernando},
journal = {Mathematica Bohemica},
keywords = {Hilbert algebra; duality; monoid of endomorphisms; BCK-algebra},
language = {eng},
number = {3},
pages = {263-276},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Duality for Hilbert algebras with supremum: An application},
url = {http://eudml.org/doc/294143},
volume = {142},
year = {2017},
}
TY - JOUR
AU - Gaitan, Hernando
TI - Duality for Hilbert algebras with supremum: An application
JO - Mathematica Bohemica
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 142
IS - 3
SP - 263
EP - 276
AB - We modify slightly the definition of $H$-partial functions given by Celani and Montangie (2012); these partial functions are the morphisms in the category of $H^\vee $-space and this category is the dual category of the category with objects the Hilbert algebras with supremum and morphisms, the algebraic homomorphisms. As an application we show that finite pure Hilbert algebras with supremum are determined by the monoid of their endomorphisms.
LA - eng
KW - Hilbert algebra; duality; monoid of endomorphisms; BCK-algebra
UR - http://eudml.org/doc/294143
ER -
References
top- Berman, J., Blok, W. J., 10.1007/s11083-006-9032-2, Order 23 (2006), 65-88. (2006) Zbl1096.08002MR2258461DOI10.1007/s11083-006-9032-2
- Celani, S. A., 10.1155/S0161171202011134, Int. J. Math. Math. Sci. 29 (2002), 55-61. (2002) Zbl0993.03089MR1892332DOI10.1155/S0161171202011134
- Celani, S. A., Cabrer, L. M., 10.1016/j.disc.2005.09.002, Discrete Math. 305 (2005), 74-99. (2005) Zbl1084.03050MR2186683DOI10.1016/j.disc.2005.09.002
- Celani, S. A., Cabrer, L. M., Montangie, D., 10.2478/s11533-009-0032-5, Cent. Eur. J. Math. 7 (2009), 463-478. (2009) Zbl1184.03064MR2534466DOI10.2478/s11533-009-0032-5
- Celani, S. A., Montangie, D., 10.1007/s00012-012-0178-z, Algebra Univers. 67 (2012), 237-255. (2012) Zbl1254.03117MR2910125DOI10.1007/s00012-012-0178-z
- Diego, A., Sur les algèbres de Hilbert, Collection de logique mathématique. Ser. A, vol. 21. Gauthier-Villars, Paris; E. Nauwelaerts, Louvain (1966). (1966) Zbl0144.00105MR0199086
- Gaitán, H., 10.1080/00927872.2013.865039, Commun. Algebra 43 (2015), 1135-1145. (2015) Zbl1320.03090MR3298124DOI10.1080/00927872.2013.865039
- Idziak, P. M., Lattice operations in BCK-algebras, Math. Jap. 29 (1984), 839-846. (1984) Zbl0555.03030MR0803438
- Iseki, K., Tanaka, S., An introduction to the theory of BCK-algebras, Math. Jap. 23 (1978), 1-26. (1978) Zbl0385.03051MR0500283
- Kondo, M., Hilbert algebras are dual isomorphic to positive implicative BCK-algebras, Math. Jap. 49 (1999), 265-268. (1999) Zbl0930.06017MR1687626
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.