Natural operations on holomorphic forms
A. Navarro; J. Navarro; C. Tejero Prieto
Archivum Mathematicum (2018)
- Volume: 054, Issue: 4, page 239-254
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topNavarro, A., Navarro, J., and Tejero Prieto, C.. "Natural operations on holomorphic forms." Archivum Mathematicum 054.4 (2018): 239-254. <http://eudml.org/doc/294155>.
@article{Navarro2018,
abstract = {We prove that the only natural differential operations between holomorphic forms on a complex manifold are those obtained using linear combinations, the exterior product and the exterior differential. In order to accomplish this task we first develop the basics of the theory of natural holomorphic bundles over a fixed manifold, making explicit its Galoisian structure by proving a categorical equivalence à la Galois.},
author = {Navarro, A., Navarro, J., Tejero Prieto, C.},
journal = {Archivum Mathematicum},
keywords = {natural bundles; natural operations},
language = {eng},
number = {4},
pages = {239-254},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Natural operations on holomorphic forms},
url = {http://eudml.org/doc/294155},
volume = {054},
year = {2018},
}
TY - JOUR
AU - Navarro, A.
AU - Navarro, J.
AU - Tejero Prieto, C.
TI - Natural operations on holomorphic forms
JO - Archivum Mathematicum
PY - 2018
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 054
IS - 4
SP - 239
EP - 254
AB - We prove that the only natural differential operations between holomorphic forms on a complex manifold are those obtained using linear combinations, the exterior product and the exterior differential. In order to accomplish this task we first develop the basics of the theory of natural holomorphic bundles over a fixed manifold, making explicit its Galoisian structure by proving a categorical equivalence à la Galois.
LA - eng
KW - natural bundles; natural operations
UR - http://eudml.org/doc/294155
ER -
References
top- Atiyah, M., 10.1090/S0002-9947-1957-0086359-5, Trans. Amer. Math. Soc. 85 (1957), 181–207. (1957) MR0086359DOI10.1090/S0002-9947-1957-0086359-5
- Atiyah, M., Bott, R., Patodi, V.K., 10.1007/BF01425417, Invent. Math. 19 (1973), 279–330. (1973) MR0650828DOI10.1007/BF01425417
- Bernig, A., 10.1016/j.difgeo.2016.10.005, Differential Geom. Appl. 50 (2017), 34–51. (2017) MR3588639DOI10.1016/j.difgeo.2016.10.005
- Epstein, D.B.A., Thurston, W.P., Transformation groups and natural bundles, Proc. Lond. Math. Soc. 38 (1976), 219–236. (1976) MR0531161
- Freed, D.S., Hopkins, M.J., 10.1090/S0273-0979-2013-01415-0, Bull. Amer. Math. Soc. 50 (2013), 431–468. (2013) MR3049871DOI10.1090/S0273-0979-2013-01415-0
- Goodman, R., Wallach, N., Representation and Invariants of the Classical Groups, Cambridge University Press, 1998. (1998) MR1606831
- Gordillo, A., Navarro, J., Sancho, P., A remark on the invariant theory of real Lie groups, Colloq. Math., to appear.
- Katsylo, P.I., Timashev, D.A., 10.1070/SM2008v199n10ABEH003969, Sbornik: Mathematics 199 (2008), 1481–1503. (2008) MR2473812DOI10.1070/SM2008v199n10ABEH003969
- Kolář, I., Michor, P.W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993. (1993) MR1202431
- Krupka, D., Mikolášová, V., On the uniqueness of some differential invariants: , Czechoslovak Math. J. 34 (1984), 588–597. (1984) MR0764440
- Mason-Brown, L., Natural structures in differential geometry, private communication.
- Navarro, J., Sancho, J.B., Peetre-Slovák’s theorem revisited, arXiv: 1411.7499.
- Navarro, J., Sancho, J.B., 10.1016/j.difgeo.2014.12.003, Differential Geom. Appl. 38 (2015), 159–174. (2015) MR3304675DOI10.1016/j.difgeo.2014.12.003
- Nijenhuis, A., Natural bundles and their general properties, Differential Geometry in honor of K. Yano, Kinokuniya, Tokyo, 1972, pp. 317–334. (1972) Zbl0246.53018MR0380862
- Palais, R.S., 10.1090/S0002-9947-1959-0116352-7, Trans. Amer. Math. Soc. 92 (1959), 125–141. (1959) MR0116352DOI10.1090/S0002-9947-1959-0116352-7
- Terng, C.L., 10.2307/2373910, Amer. J. Math. 100 (1978), 775–828. (1978) Zbl0422.58001MR0509074DOI10.2307/2373910
- Timashev, D.A., On differential characteristic classes of metrics and connections, Fundam. Priklad. Mat. 20 (2015), 167–183. (2015) MR3472276
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.