Application of Calderón's inverse problem in civil engineering
Applications of Mathematics (2018)
- Volume: 63, Issue: 6, page 687-712
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHavelka, Jan, and Sýkora, Jan. "Application of Calderón's inverse problem in civil engineering." Applications of Mathematics 63.6 (2018): 687-712. <http://eudml.org/doc/294161>.
@article{Havelka2018,
abstract = {In specific fields of research such as preservation of historical buildings, medical imaging, geophysics and others, it is of particular interest to perform only a non-intrusive boundary measurements. The idea is to obtain comprehensive information about the material properties inside the considered domain while keeping the test sample intact. This paper is focused on such problems, i.e. synthesizing a physical model of interest with a boundary inverse value technique. The forward model is represented here by time dependent heat equation with transport parameters that are subsequently identified using a modified Calderón problem which is numerically solved by a regularized Gauss-Newton method. The proposed model setup is computationally verified for various domains, loading conditions and material distributions.},
author = {Havelka, Jan, Sýkora, Jan},
journal = {Applications of Mathematics},
keywords = {Calderón problem; finite element method; diffusion equation; boundary inverse value method; Neumann-to-Dirichlet map},
language = {eng},
number = {6},
pages = {687-712},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Application of Calderón's inverse problem in civil engineering},
url = {http://eudml.org/doc/294161},
volume = {63},
year = {2018},
}
TY - JOUR
AU - Havelka, Jan
AU - Sýkora, Jan
TI - Application of Calderón's inverse problem in civil engineering
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 6
SP - 687
EP - 712
AB - In specific fields of research such as preservation of historical buildings, medical imaging, geophysics and others, it is of particular interest to perform only a non-intrusive boundary measurements. The idea is to obtain comprehensive information about the material properties inside the considered domain while keeping the test sample intact. This paper is focused on such problems, i.e. synthesizing a physical model of interest with a boundary inverse value technique. The forward model is represented here by time dependent heat equation with transport parameters that are subsequently identified using a modified Calderón problem which is numerically solved by a regularized Gauss-Newton method. The proposed model setup is computationally verified for various domains, loading conditions and material distributions.
LA - eng
KW - Calderón problem; finite element method; diffusion equation; boundary inverse value method; Neumann-to-Dirichlet map
UR - http://eudml.org/doc/294161
ER -
References
top- Allers, A., Santosa, F., 10.1088/0266-5611/7/4/003, Inverse Probl. 7 (1991), 515-533. (1991) Zbl0736.35141MR1122034DOI10.1088/0266-5611/7/4/003
- Bakirov, V. F., Kline, R. A., Winfree, W. P., 10.1063/1.1711659, AIP Conf. Proc. 700 (2004), 469-476. (2004) DOI10.1063/1.1711659
- Bakirov, V. F., Kline, R. A., Winfree, W. P., 10.1063/1.1711658, AIP Conf. Proc. 700 (2004), 461-468. (2004) DOI10.1063/1.1711658
- Bathe, K.-J., Finite Element Procedures, Prentice Hall, Upper Saddle River (2006). (2006)
- Berenstein, C. A., Tarabusi, E. Casadio, 10.1215/S0012-7094-91-06227-7, Duke Math. J. 62 (1991), 613-631. (1991) Zbl0742.44002MR1104811DOI10.1215/S0012-7094-91-06227-7
- Blue, R. S., Real-time three-dimensional electrical impedance tomography, Ph.D. Dissertation, R.P.I, Troy (1997). (1997)
- Blue, R. S., Isaacson, D., Newell, J. C., 10.1088/0967-3334/21/1/303, Physiological Measurement 21 (2000), 15-26. (2000) DOI10.1088/0967-3334/21/1/303
- Borsic, A., Lionheart, W. R. B., McLeod, C. N., 10.1109/tmi.2002.800611, IEEE Transactions on Medical Imaging 21 (2002), 579-587. (2002) DOI10.1109/tmi.2002.800611
- Brown, R. M., Uhlmann, G. A., 10.1080/03605309708821292, Commun. Partial Differ. Equations 22 (1997), 1009-1027. (1997) Zbl0884.35167MR1452176DOI10.1080/03605309708821292
- Calderón, A. P., 10.1590/S0101-82052006000200002, Comput. Appl. Math. 25 (2006), 133-138. (2006) Zbl1182.35230MR2321646DOI10.1590/S0101-82052006000200002
- Campana, S., Piro, S., 10.1201/9780203889558, CRC Press, London (2008). (2008) DOI10.1201/9780203889558
- Cheney, M., Isaacson, D., Newell, J. C., Simske, S., Goble, J., 10.1002/ima.1850020203, Int. J. Imaging Systems and Technology 2 (1990), 66-75. (1990) DOI10.1002/ima.1850020203
- Cheng, K.-S., Isaacson, D., Newell, J. C., Gisser, D. G., 10.1109/10.35300, IEEE Transactions on Biomedical Engineering 36 (1989), 918-924. (1989) MR1080512DOI10.1109/10.35300
- Dai, T., Adler, A., 10.1109/IEMBS.2008.4649764, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008 (2008), 2721-2724. (2008) DOI10.1109/IEMBS.2008.4649764
- Groetsch, C. W., 10.1007/978-3-322-99202-4, Vieweg Mathematics for Scientists and Engineers, Vieweg, Braunschweig (1993). (1993) Zbl0779.45001MR1247696DOI10.1007/978-3-322-99202-4
- Hamilton, S. J., Lassas, M., Siltanen, S., 10.1088/0266-5611/30/7/075007, Inverse Probl. 30 (2014), Article ID 075007, 33 pages. (2014) Zbl1298.65175MR3233020DOI10.1088/0266-5611/30/7/075007
- Holder, D. S., Electrical Impedance Tomography: Methods, History and Applications, Series in Medical Physics and Biomedical Engineering, Taylor & Francis, Portland (2004). (2004)
- Huang, C.-H., Chin, S.-C., 10.1016/S0017-9310(00)00044-2, Int. J. Heat Mass Transfer 43 (2000), 4061-4071. (2000) Zbl0973.80005DOI10.1016/S0017-9310(00)00044-2
- Jones, M. R., Tezuka, A., Yamada, Y., 10.1115/1.2836318, J. Heat Transfer 117 (1995), 969-975. (1995) DOI10.1115/1.2836318
- Kirsch, A., 10.1007/978-1-4419-8474-6, Applied Mathematical Sciences 120, Springer, New York (2011). (2011) Zbl1213.35004MR3025302DOI10.1007/978-1-4419-8474-6
- Knudsen, K., Lassas, M., Mueller, J. L., Siltanen, S., 10.3934/ipi.2009.3.599, Inverse Probl. Imaging 3 (2009), 599-624. (2009) Zbl1184.35314MR2557921DOI10.3934/ipi.2009.3.599
- Kolehmainen, V., Kaipio, J. P., Orlande, H. R. B., 10.1016/j.ijheatmasstransfer.2007.06.043, Int. J. Heat Mass Transfer 51 (2008), 1866-1876. (2008) Zbl1140.80396DOI10.1016/j.ijheatmasstransfer.2007.06.043
- Kučerová, A., Sýkora, J., Rosić, B., Matthies, H. G., 10.1016/j.cam.2012.02.003, J. Comput. Appl. Math. 236 (2012), 4862-4872. (2012) Zbl06078396MR2946415DOI10.1016/j.cam.2012.02.003
- Ladyženskaja, O. A., Solonnikov, V. A., Ural'ceva, N. N., 10.1090/mmono/023, Translations of Mathematical Monographs 23, American Mathematical Society, Providence (1968). (1968) Zbl0174.15403MR0241822DOI10.1090/mmono/023
- Lanczos, C., 10.1137/1.9781611971187, Classics in Applied Mathematics 18, Society for Industrial and Applied Mathematics, Philadelphia (1996). (1996) Zbl0865.34001MR1393942DOI10.1137/1.9781611971187
- Langer, R. E., 10.1090/S0002-9904-1933-05752-X, Bull. Am. Math. Soc. 39 (1933), 814-820. (1933) Zbl0008.04603MR1562734DOI10.1090/S0002-9904-1933-05752-X
- Mamatjan, Y., Borsic, A., Gürsoy, D., Adler, A., 10.1088/1742-6596/434/1/012078, J. Phys., Conf. Ser. 434 (2013), 1-4. (2013) DOI10.1088/1742-6596/434/1/012078
- Mueller, J. L., Isaacson, D., Newell, J. C., 10.1088/0967-3334/22/1/313, Physiological Measurement 22 (2001), 97-106. (2001) DOI10.1088/0967-3334/22/1/313
- Mueller, J. L., Siltanen, S., 10.1137/S1064827501394568, SIAM J. Sci. Comput. 24 (2003), 1232-1266. (2003) Zbl1031.78008MR1976215DOI10.1137/S1064827501394568
- Nachman, A. I., 10.2307/2118653, Ann. Math. (2) 143 (1996), 71-96. (1996) Zbl0857.35135MR1370758DOI10.2307/2118653
- Niu, H., Guo, P., Ji, L., Zhao, Q., Jiang, T., 10.1364/OE.16.012423, Optics Express 16 (2008), 12423-12434. (2008) DOI10.1364/OE.16.012423
- Rektorys, K., Variational Methods in Mathematics, Science and Engineering, D. Reidel Publishing Company, Dordrecht (1980). (1980) Zbl0481.49002MR0596582
- Santosa, F., Vogelius, M., 10.1137/0150014, SIAM J. Appl. Math. 50 (1990), 216-243. (1990) Zbl0691.65087MR1036240DOI10.1137/0150014
- Siltanen, S., Mueller, J., Isaacson, D., 10.1088/0266-5611/16/3/310, Inverse Probl. 16 (2000), 681-699 erratum ibid. 17 2001 1561-1563. (2000) Zbl0962.35193MR1862207DOI10.1088/0266-5611/16/3/310
- Somersalo, E., Cheney, M., Isaacson, D., 10.1137/0152060, SIAM J. Appl. Math. 52 (1992), 1023-1040. (1992) Zbl0759.35055MR1174044DOI10.1137/0152060
- Somersalo, E., Cheney, M., Isaacson, D., Isaacson, E., 10.1088/0266-5611/7/6/011, Inverse Probl. 7 (1991), 899-926. (1991) Zbl0753.35122MR1140322DOI10.1088/0266-5611/7/6/011
- Sýkora, J., 10.1016/j.advengsoft.2014.01.004, Adv. Eng. Softw. 70 (2014), 203-212. (2014) DOI10.1016/j.advengsoft.2014.01.004
- Sýkora, J., Krejčí, T., Kruis, J., Šejnoha, M., 10.1016/j.cam.2012.02.031, J. Comput. Appl. Math. 236 (2012), 4745-4755. (2012) Zbl1259.80007DOI10.1016/j.cam.2012.02.031
- Sylvester, J., Uhlmann, G., 10.2307/1971291, Ann. Math. (2) 125 (1987), 153-169. (1987) Zbl0625.35078MR0873380DOI10.2307/1971291
- Syren, J., Theoretical and numerical analysis of the Dirichlet-to-Neumann map in EIT, Master Thesis, University of Helsinki (2016). (2016)
- Toivanen, J. M., Tarvainen, T., Huttunen, J. M. J., Savolainen, T., Orlande, H. R. B., Kaipio, J. P., Kolehmainen, V., 10.1016/j.ijheatmasstransfer.2014.07.080, Int. J. Heat Mass Transfer 78 (2014), 1126-1134. (2014) DOI10.1016/j.ijheatmasstransfer.2014.07.080
- Vauhkonen, M., Electrical impedance tomography and prior information, Ph.D. Dissertation, Kuopio University, Joensuu (2007). (2007)
- Vauhkonen, M., Lionheart, W. R. B., Heikkinen, L. M., Vauhkonen, P. J., Kaipio, J. P., 10.1088/0967-3334/22/1/314, Physiological Measurement 22 (2001), 107-111. (2001) DOI10.1088/0967-3334/22/1/314
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.