The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces

Suying Liu; Minghua Yang

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 2, page 415-431
  • ISSN: 0011-4642

Abstract

top
Let L be a non-negative self-adjoint operator acting on L 2 ( n ) satisfying a pointwise Gaussian estimate for its heat kernel. Let w be an A r weight on n × n , 1 < r < . In this article we obtain a weighted atomic decomposition for the weighted Hardy space H L , w p ( n × n ) , 0 < p 1 associated to L . Based on the atomic decomposition, we show the dual relationship between H L , w 1 ( n × n ) and BMO L , w ( n × n ) .

How to cite

top

Liu, Suying, and Yang, Minghua. "The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces." Czechoslovak Mathematical Journal 68.2 (2018): 415-431. <http://eudml.org/doc/294162>.

@article{Liu2018,
abstract = {Let $L$ be a non-negative self-adjoint operator acting on $L^2(\{\mathbb \{R\}\}^n)$ satisfying a pointwise Gaussian estimate for its heat kernel. Let $w$ be an $A_r$ weight on $\{\mathbb \{R\}\}^n\times \{\mathbb \{R\}\}^n$, $1<r<\infty $. In this article we obtain a weighted atomic decomposition for the weighted Hardy space $H^\{p\}_\{L,w\}(\{\mathbb \{R\}\}^n\times \{\mathbb \{R\}\}^n)$, $0<p\le 1$ associated to $L$. Based on the atomic decomposition, we show the dual relationship between $H^\{1\}_\{L,w\}(\{\mathbb \{R\}\}^n\times \{\mathbb \{R\}\}^n)$ and $\{\rm BMO\}_\{L,w\}(\{\mathbb \{R\}\}^n\times \{\mathbb \{R\}\}^n)$.},
author = {Liu, Suying, Yang, Minghua},
journal = {Czechoslovak Mathematical Journal},
keywords = {weighted Hardy space; operator; Gaussian estimate; duality; product space},
language = {eng},
number = {2},
pages = {415-431},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces},
url = {http://eudml.org/doc/294162},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Liu, Suying
AU - Yang, Minghua
TI - The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 415
EP - 431
AB - Let $L$ be a non-negative self-adjoint operator acting on $L^2({\mathbb {R}}^n)$ satisfying a pointwise Gaussian estimate for its heat kernel. Let $w$ be an $A_r$ weight on ${\mathbb {R}}^n\times {\mathbb {R}}^n$, $1<r<\infty $. In this article we obtain a weighted atomic decomposition for the weighted Hardy space $H^{p}_{L,w}({\mathbb {R}}^n\times {\mathbb {R}}^n)$, $0<p\le 1$ associated to $L$. Based on the atomic decomposition, we show the dual relationship between $H^{1}_{L,w}({\mathbb {R}}^n\times {\mathbb {R}}^n)$ and ${\rm BMO}_{L,w}({\mathbb {R}}^n\times {\mathbb {R}}^n)$.
LA - eng
KW - weighted Hardy space; operator; Gaussian estimate; duality; product space
UR - http://eudml.org/doc/294162
ER -

References

top
  1. Anh, B. T., Duong, X. T., Weighted Hardy spaces associated to operators and boundedness of singular integrals, Available at https://arxiv.org/abs/1202.2063. 
  2. Auscher, P., 10.1090/memo/0871, Mem. Am. Math. Soc. 186 (2007), 75 pages. (2007) Zbl1221.42022MR2292385DOI10.1090/memo/0871
  3. Auscher, P., Duong, X. T., McIntosh, A., Boundedness of Banach space valued singular integral operators and Hardy spaces, Unpublished preprint (2005). (2005) 
  4. Auscher, P., Martell, J. M., 10.1016/j.aim.2006.10.002, Adv. Math. 212 (2007), 225-276. (2007) Zbl1213.42030MR2319768DOI10.1016/j.aim.2006.10.002
  5. Auscher, P., Martell, J. M., 10.1007/s00028-007-0288-9, J. Evol. Equ. 7 (2007), 265-316. (2007) Zbl1210.42023MR2316480DOI10.1007/s00028-007-0288-9
  6. Auscher, P., Martell, J. M., 10.1016/j.jfa.2006.07.008, J. Funct. Anal. 241 (2006), 703-746. (2006) Zbl1213.42029MR2271934DOI10.1016/j.jfa.2006.07.008
  7. Auscher, P., McIntosh, A., Russ, E., 10.1007/s12220-007-9003-x, J. Geom. Anal. 18 (2008), 192-248. (2008) Zbl1217.42043MR2365673DOI10.1007/s12220-007-9003-x
  8. Bownik, M., Li, B., Yang, D., Zhou, Y., 10.1002/mana.200910078, Math. Nachr. 283 (2010), 392-442. (2010) Zbl1205.42021MR2643020DOI10.1002/mana.200910078
  9. Bui, H.-Q., Duong, X. T., Yan, L., 10.1016/j.aim.2012.01.005, Adv. Math. 229 (2012), 2449-2502. (2012) Zbl1241.46020MR2880229DOI10.1016/j.aim.2012.01.005
  10. Carleson, L., A counterexample for measures bounded on H p for the bi-disc, Mittag Leffler Report 7 (1974). (1974) 
  11. Chang, S.-Y. A., Fefferman, R., 10.2307/1971324, Ann. Math. (2) 112 (1980), 179-201. (1980) Zbl0451.42014MR0584078DOI10.2307/1971324
  12. Chang, S.-Y. A., Fefferman, R., 10.2307/2374150, Am. J. Math. 104 (1982), 445-468. (1982) Zbl0513.42019MR0658542DOI10.2307/2374150
  13. Chang, S.-Y. A., Fefferman, R., 10.1090/S0273-0979-1985-15291-7, Bull. Am. Math. Soc., New Ser. 12 (1985), 1-43. (1985) Zbl0557.42007MR0766959DOI10.1090/S0273-0979-1985-15291-7
  14. Davies, E. B., 10.1017/CBO9780511566158, Cambridge Tracts in Mathematics 92, Cambridge University Press, Cambridge (1989). (1989) Zbl0699.35006MR0990239DOI10.1017/CBO9780511566158
  15. Deng, D., Song, L., Tan, C., Yan, L., 10.1007/BF02922092, J. Geom. Anal. 17 (2007), 455-483. (2007) Zbl1146.42003MR2359975DOI10.1007/BF02922092
  16. Duong, X. T., Li, J., 10.1016/j.jfa.2013.01.006, J. Funct. Anal. 264 (2013), 1409-1437. (2013) Zbl1271.42033MR3017269DOI10.1016/j.jfa.2013.01.006
  17. Duong, X. T., MacIntosh, A., 10.4171/RMI/255, Rev. Mat. Iberoam. 15 (1999), 233-265. (1999) Zbl0980.42007MR1715407DOI10.4171/RMI/255
  18. Duong, X. T., Ouhabaz, E. M., Sikora, A., 10.1016/S0022-1236(02)00009-5, J. Funct. Anal. 196 (2002), 443-485. (2002) Zbl1029.43006MR1943098DOI10.1016/S0022-1236(02)00009-5
  19. Duong, X. T., Xiao, J., Yan, L., 10.1007/s00041-006-6057-2, J. Fourier Anal. Appl. 13 (2007), 87-111. (2007) Zbl1133.42017MR2296729DOI10.1007/s00041-006-6057-2
  20. Duong, X. T., Yan, L., 10.1090/S0894-0347-05-00496-0, J. Am. Math. Soc. 18 (2005), 943-973. (2005) Zbl1078.42013MR2163867DOI10.1090/S0894-0347-05-00496-0
  21. Fefferman, R., 10.2307/2374700, Am. J. Math. 110 (1988), 975-987. (1988) Zbl0665.42020MR0961502DOI10.2307/2374700
  22. García-Cuerva, J., Francia, J. Rubio de, 10.1016/s0304-0208(08)x7154-3, North-Holland Mathematics Studies 116, North-Holland, Amsterdam (1985). (1985) Zbl0578.46046MR0807149DOI10.1016/s0304-0208(08)x7154-3
  23. Gundy, R. F., Stein, E. M., 10.1073/pnas.76.3.1026, Proc. Natl. Acad. Sci. USA 76 (1979), 1026-1029. (1979) Zbl0405.32002MR0524328DOI10.1073/pnas.76.3.1026
  24. Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., Yan, L., 10.1090/S0065-9266-2011-00624-6, Mem. Am. Math. Soc. 214 (2011), 78 pages. (2011) Zbl1232.42018MR2868142DOI10.1090/S0065-9266-2011-00624-6
  25. Hofmann, S., Mayboroda, S., 10.1007/s00208-008-0295-3, Math. Ann. 344 (2009), 37-116. (2009) Zbl1162.42012MR2481054DOI10.1007/s00208-008-0295-3
  26. Jiang, R., Yang, D., 10.1016/j.jfa.2009.10.018, J. Funct. Anal. 258 (2010), 1167-1224. (2010) Zbl1205.46014MR2565837DOI10.1016/j.jfa.2009.10.018
  27. Journé, J.-L., 10.4171/RMI/15, Rev. Mat. Iberoam. 1 (1985), 55-91. (1985) Zbl0634.42015MR0836284DOI10.4171/RMI/15
  28. Kerkyacharian, G., Petrushev, P., 10.1090/S0002-9947-2014-05993-X, Trans. Am. Math. Soc. 367 (2015), 121-189. (2015) Zbl1321.58017MR3271256DOI10.1090/S0002-9947-2014-05993-X
  29. Krug, D., 10.1512/iumj.1988.37.37014, Indian Univ. Math. J. 37 (1988), 277-300. (1988) Zbl0635.46048MR0963503DOI10.1512/iumj.1988.37.37014
  30. Krug, D., Torchinsky, A., 10.4171/RMI/155, Rev. Math. Iberoam. 10 (1994), 363-378. (1994) Zbl0819.42009MR1286479DOI10.4171/RMI/155
  31. Liu, S., Song, L., 10.1016/j.jfa.2013.08.003, J. Funct. Anal. 265 (2013), 2709-2723. (2013) Zbl1285.42019MR3096987DOI10.1016/j.jfa.2013.08.003
  32. Liu, S., Song, L., 10.1016/j.jmaa.2016.05.021, J. Math. Anal. Appl. 443 (2016), 92-115. (2016) Zbl1341.42034MR3508481DOI10.1016/j.jmaa.2016.05.021
  33. Martell, J. M., Prisuelos-Arribas, C., 10.1090/tran/6768, Trans. Am. Math. Soc. 369 (2017), 4193-4233. (2017) Zbl06698812MR3624406DOI10.1090/tran/6768
  34. Martell, J. M., Prisuelos-Arribas, C., Weighted Hardy spaces associated with elliptic operators. Part II: Characterizations of H L 1 ( w ) , Available at https://arxiv.org/abs/1701.00920. MR3624406
  35. Ouhabaz, E. M., 10.1515/9781400826483, London Mathematical Society Monographs Series 31, Princeton University Press, Princeton (2005). (2005) Zbl1082.35003MR2124040DOI10.1515/9781400826483
  36. Sato, S., 10.4064/sm-92-1-59-72, Stud. Math. 92 (1989), 59-72. (1989) Zbl0667.42008MR0984850DOI10.4064/sm-92-1-59-72
  37. Song, L., Tan, C., Yan, L., 10.1017/S1446788711001376, J. Aust. Math. Soc. 91 (2011), 125-144. (2011) Zbl1238.42007MR2844951DOI10.1017/S1446788711001376
  38. Song, L., Xiao, J., Yan, L., 10.1007/s11118-014-9396-7, Potential Anal. 41 (2014), 849-867. (2014) Zbl1308.42024MR3264823DOI10.1007/s11118-014-9396-7
  39. Song, L., Yan, L., 10.1016/j.jfa.2010.05.015, J. Funct. Anal. 259 (2010), 1466-1490. (2010) Zbl1202.35072MR2659768DOI10.1016/j.jfa.2010.05.015
  40. Stein, E. M., Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Mathematical Series 43, Princeton University Press, Princeton (1993). (1993) Zbl0821.42001MR1232192
  41. Strömberg, J.-O., Torchinsky, A., 10.1007/BFb0091154, Lecture Notes in Mathematics 1381, Springer, Berlin (1989). (1989) Zbl0676.42021MR1011673DOI10.1007/BFb0091154
  42. Zhu, X. X., Atomic decomposition for weighted H p spaces on product domains, Sci. China, Ser. A 35 (1992), 158-168. (1992) Zbl0801.46062MR1183454

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.