The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 2, page 415-431
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLiu, Suying, and Yang, Minghua. "The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces." Czechoslovak Mathematical Journal 68.2 (2018): 415-431. <http://eudml.org/doc/294162>.
@article{Liu2018,
abstract = {Let $L$ be a non-negative self-adjoint operator acting on $L^2(\{\mathbb \{R\}\}^n)$ satisfying a pointwise Gaussian estimate for its heat kernel. Let $w$ be an $A_r$ weight on $\{\mathbb \{R\}\}^n\times \{\mathbb \{R\}\}^n$, $1<r<\infty $. In this article we obtain a weighted atomic decomposition for the weighted Hardy space $H^\{p\}_\{L,w\}(\{\mathbb \{R\}\}^n\times \{\mathbb \{R\}\}^n)$, $0<p\le 1$ associated to $L$. Based on the atomic decomposition, we show the dual relationship between $H^\{1\}_\{L,w\}(\{\mathbb \{R\}\}^n\times \{\mathbb \{R\}\}^n)$ and $\{\rm BMO\}_\{L,w\}(\{\mathbb \{R\}\}^n\times \{\mathbb \{R\}\}^n)$.},
author = {Liu, Suying, Yang, Minghua},
journal = {Czechoslovak Mathematical Journal},
keywords = {weighted Hardy space; operator; Gaussian estimate; duality; product space},
language = {eng},
number = {2},
pages = {415-431},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces},
url = {http://eudml.org/doc/294162},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Liu, Suying
AU - Yang, Minghua
TI - The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 415
EP - 431
AB - Let $L$ be a non-negative self-adjoint operator acting on $L^2({\mathbb {R}}^n)$ satisfying a pointwise Gaussian estimate for its heat kernel. Let $w$ be an $A_r$ weight on ${\mathbb {R}}^n\times {\mathbb {R}}^n$, $1<r<\infty $. In this article we obtain a weighted atomic decomposition for the weighted Hardy space $H^{p}_{L,w}({\mathbb {R}}^n\times {\mathbb {R}}^n)$, $0<p\le 1$ associated to $L$. Based on the atomic decomposition, we show the dual relationship between $H^{1}_{L,w}({\mathbb {R}}^n\times {\mathbb {R}}^n)$ and ${\rm BMO}_{L,w}({\mathbb {R}}^n\times {\mathbb {R}}^n)$.
LA - eng
KW - weighted Hardy space; operator; Gaussian estimate; duality; product space
UR - http://eudml.org/doc/294162
ER -
References
top- Anh, B. T., Duong, X. T., Weighted Hardy spaces associated to operators and boundedness of singular integrals, Available at https://arxiv.org/abs/1202.2063.
- Auscher, P., 10.1090/memo/0871, Mem. Am. Math. Soc. 186 (2007), 75 pages. (2007) Zbl1221.42022MR2292385DOI10.1090/memo/0871
- Auscher, P., Duong, X. T., McIntosh, A., Boundedness of Banach space valued singular integral operators and Hardy spaces, Unpublished preprint (2005). (2005)
- Auscher, P., Martell, J. M., 10.1016/j.aim.2006.10.002, Adv. Math. 212 (2007), 225-276. (2007) Zbl1213.42030MR2319768DOI10.1016/j.aim.2006.10.002
- Auscher, P., Martell, J. M., 10.1007/s00028-007-0288-9, J. Evol. Equ. 7 (2007), 265-316. (2007) Zbl1210.42023MR2316480DOI10.1007/s00028-007-0288-9
- Auscher, P., Martell, J. M., 10.1016/j.jfa.2006.07.008, J. Funct. Anal. 241 (2006), 703-746. (2006) Zbl1213.42029MR2271934DOI10.1016/j.jfa.2006.07.008
- Auscher, P., McIntosh, A., Russ, E., 10.1007/s12220-007-9003-x, J. Geom. Anal. 18 (2008), 192-248. (2008) Zbl1217.42043MR2365673DOI10.1007/s12220-007-9003-x
- Bownik, M., Li, B., Yang, D., Zhou, Y., 10.1002/mana.200910078, Math. Nachr. 283 (2010), 392-442. (2010) Zbl1205.42021MR2643020DOI10.1002/mana.200910078
- Bui, H.-Q., Duong, X. T., Yan, L., 10.1016/j.aim.2012.01.005, Adv. Math. 229 (2012), 2449-2502. (2012) Zbl1241.46020MR2880229DOI10.1016/j.aim.2012.01.005
- Carleson, L., A counterexample for measures bounded on for the bi-disc, Mittag Leffler Report 7 (1974). (1974)
- Chang, S.-Y. A., Fefferman, R., 10.2307/1971324, Ann. Math. (2) 112 (1980), 179-201. (1980) Zbl0451.42014MR0584078DOI10.2307/1971324
- Chang, S.-Y. A., Fefferman, R., 10.2307/2374150, Am. J. Math. 104 (1982), 445-468. (1982) Zbl0513.42019MR0658542DOI10.2307/2374150
- Chang, S.-Y. A., Fefferman, R., 10.1090/S0273-0979-1985-15291-7, Bull. Am. Math. Soc., New Ser. 12 (1985), 1-43. (1985) Zbl0557.42007MR0766959DOI10.1090/S0273-0979-1985-15291-7
- Davies, E. B., 10.1017/CBO9780511566158, Cambridge Tracts in Mathematics 92, Cambridge University Press, Cambridge (1989). (1989) Zbl0699.35006MR0990239DOI10.1017/CBO9780511566158
- Deng, D., Song, L., Tan, C., Yan, L., 10.1007/BF02922092, J. Geom. Anal. 17 (2007), 455-483. (2007) Zbl1146.42003MR2359975DOI10.1007/BF02922092
- Duong, X. T., Li, J., 10.1016/j.jfa.2013.01.006, J. Funct. Anal. 264 (2013), 1409-1437. (2013) Zbl1271.42033MR3017269DOI10.1016/j.jfa.2013.01.006
- Duong, X. T., MacIntosh, A., 10.4171/RMI/255, Rev. Mat. Iberoam. 15 (1999), 233-265. (1999) Zbl0980.42007MR1715407DOI10.4171/RMI/255
- Duong, X. T., Ouhabaz, E. M., Sikora, A., 10.1016/S0022-1236(02)00009-5, J. Funct. Anal. 196 (2002), 443-485. (2002) Zbl1029.43006MR1943098DOI10.1016/S0022-1236(02)00009-5
- Duong, X. T., Xiao, J., Yan, L., 10.1007/s00041-006-6057-2, J. Fourier Anal. Appl. 13 (2007), 87-111. (2007) Zbl1133.42017MR2296729DOI10.1007/s00041-006-6057-2
- Duong, X. T., Yan, L., 10.1090/S0894-0347-05-00496-0, J. Am. Math. Soc. 18 (2005), 943-973. (2005) Zbl1078.42013MR2163867DOI10.1090/S0894-0347-05-00496-0
- Fefferman, R., 10.2307/2374700, Am. J. Math. 110 (1988), 975-987. (1988) Zbl0665.42020MR0961502DOI10.2307/2374700
- García-Cuerva, J., Francia, J. Rubio de, 10.1016/s0304-0208(08)x7154-3, North-Holland Mathematics Studies 116, North-Holland, Amsterdam (1985). (1985) Zbl0578.46046MR0807149DOI10.1016/s0304-0208(08)x7154-3
- Gundy, R. F., Stein, E. M., 10.1073/pnas.76.3.1026, Proc. Natl. Acad. Sci. USA 76 (1979), 1026-1029. (1979) Zbl0405.32002MR0524328DOI10.1073/pnas.76.3.1026
- Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., Yan, L., 10.1090/S0065-9266-2011-00624-6, Mem. Am. Math. Soc. 214 (2011), 78 pages. (2011) Zbl1232.42018MR2868142DOI10.1090/S0065-9266-2011-00624-6
- Hofmann, S., Mayboroda, S., 10.1007/s00208-008-0295-3, Math. Ann. 344 (2009), 37-116. (2009) Zbl1162.42012MR2481054DOI10.1007/s00208-008-0295-3
- Jiang, R., Yang, D., 10.1016/j.jfa.2009.10.018, J. Funct. Anal. 258 (2010), 1167-1224. (2010) Zbl1205.46014MR2565837DOI10.1016/j.jfa.2009.10.018
- Journé, J.-L., 10.4171/RMI/15, Rev. Mat. Iberoam. 1 (1985), 55-91. (1985) Zbl0634.42015MR0836284DOI10.4171/RMI/15
- Kerkyacharian, G., Petrushev, P., 10.1090/S0002-9947-2014-05993-X, Trans. Am. Math. Soc. 367 (2015), 121-189. (2015) Zbl1321.58017MR3271256DOI10.1090/S0002-9947-2014-05993-X
- Krug, D., 10.1512/iumj.1988.37.37014, Indian Univ. Math. J. 37 (1988), 277-300. (1988) Zbl0635.46048MR0963503DOI10.1512/iumj.1988.37.37014
- Krug, D., Torchinsky, A., 10.4171/RMI/155, Rev. Math. Iberoam. 10 (1994), 363-378. (1994) Zbl0819.42009MR1286479DOI10.4171/RMI/155
- Liu, S., Song, L., 10.1016/j.jfa.2013.08.003, J. Funct. Anal. 265 (2013), 2709-2723. (2013) Zbl1285.42019MR3096987DOI10.1016/j.jfa.2013.08.003
- Liu, S., Song, L., 10.1016/j.jmaa.2016.05.021, J. Math. Anal. Appl. 443 (2016), 92-115. (2016) Zbl1341.42034MR3508481DOI10.1016/j.jmaa.2016.05.021
- Martell, J. M., Prisuelos-Arribas, C., 10.1090/tran/6768, Trans. Am. Math. Soc. 369 (2017), 4193-4233. (2017) Zbl06698812MR3624406DOI10.1090/tran/6768
- Martell, J. M., Prisuelos-Arribas, C., Weighted Hardy spaces associated with elliptic operators. Part II: Characterizations of , Available at https://arxiv.org/abs/1701.00920. MR3624406
- Ouhabaz, E. M., 10.1515/9781400826483, London Mathematical Society Monographs Series 31, Princeton University Press, Princeton (2005). (2005) Zbl1082.35003MR2124040DOI10.1515/9781400826483
- Sato, S., 10.4064/sm-92-1-59-72, Stud. Math. 92 (1989), 59-72. (1989) Zbl0667.42008MR0984850DOI10.4064/sm-92-1-59-72
- Song, L., Tan, C., Yan, L., 10.1017/S1446788711001376, J. Aust. Math. Soc. 91 (2011), 125-144. (2011) Zbl1238.42007MR2844951DOI10.1017/S1446788711001376
- Song, L., Xiao, J., Yan, L., 10.1007/s11118-014-9396-7, Potential Anal. 41 (2014), 849-867. (2014) Zbl1308.42024MR3264823DOI10.1007/s11118-014-9396-7
- Song, L., Yan, L., 10.1016/j.jfa.2010.05.015, J. Funct. Anal. 259 (2010), 1466-1490. (2010) Zbl1202.35072MR2659768DOI10.1016/j.jfa.2010.05.015
- Stein, E. M., Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Mathematical Series 43, Princeton University Press, Princeton (1993). (1993) Zbl0821.42001MR1232192
- Strömberg, J.-O., Torchinsky, A., 10.1007/BFb0091154, Lecture Notes in Mathematics 1381, Springer, Berlin (1989). (1989) Zbl0676.42021MR1011673DOI10.1007/BFb0091154
- Zhu, X. X., Atomic decomposition for weighted spaces on product domains, Sci. China, Ser. A 35 (1992), 158-168. (1992) Zbl0801.46062MR1183454
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.