Uniform convexity and associate spaces

Petteri Harjulehto; Peter Hästö

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 4, page 1011-1020
  • ISSN: 0011-4642

Abstract

top
We prove that the associate space of a generalized Orlicz space L φ ( · ) is given by the conjugate modular φ * even without the assumption that simple functions belong to the space. Second, we show that every weakly doubling Φ -function is equivalent to a doubling Φ -function. As a consequence, we conclude that L φ ( · ) is uniformly convex if φ and φ * are weakly doubling.

How to cite

top

Harjulehto, Petteri, and Hästö, Peter. "Uniform convexity and associate spaces." Czechoslovak Mathematical Journal 68.4 (2018): 1011-1020. <http://eudml.org/doc/294167>.

@article{Harjulehto2018,
abstract = {We prove that the associate space of a generalized Orlicz space $L^\{\phi (\cdot )\}$ is given by the conjugate modular $\phi ^*$ even without the assumption that simple functions belong to the space. Second, we show that every weakly doubling $\Phi $-function is equivalent to a doubling $\Phi $-function. As a consequence, we conclude that $L^\{\phi (\cdot )\}$ is uniformly convex if $\phi $ and $\phi ^*$ are weakly doubling.},
author = {Harjulehto, Petteri, Hästö, Peter},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized Orlicz space; Musielak-Orlicz space; nonstandard growth; variable exponent; double phase; uniform convexity; associate space},
language = {eng},
number = {4},
pages = {1011-1020},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Uniform convexity and associate spaces},
url = {http://eudml.org/doc/294167},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Harjulehto, Petteri
AU - Hästö, Peter
TI - Uniform convexity and associate spaces
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 4
SP - 1011
EP - 1020
AB - We prove that the associate space of a generalized Orlicz space $L^{\phi (\cdot )}$ is given by the conjugate modular $\phi ^*$ even without the assumption that simple functions belong to the space. Second, we show that every weakly doubling $\Phi $-function is equivalent to a doubling $\Phi $-function. As a consequence, we conclude that $L^{\phi (\cdot )}$ is uniformly convex if $\phi $ and $\phi ^*$ are weakly doubling.
LA - eng
KW - generalized Orlicz space; Musielak-Orlicz space; nonstandard growth; variable exponent; double phase; uniform convexity; associate space
UR - http://eudml.org/doc/294167
ER -

References

top
  1. Adams, R., Sobolev Spaces, Pure and Applied Mathematics 65, Academic Press, New York (1975). (1975) Zbl0314.46030MR0450957
  2. Avci, M., Pankov, A., 10.1515/anona-2016-0043, Adv. Nonlinear Anal. 7 (2018), 35-48. (2018) Zbl06837817MR3757454DOI10.1515/anona-2016-0043
  3. Baroni, P., Colombo, M., Mingione, G., 10.1090/spmj/1392, St. Petersbg. Math. J. 27 (2016), 347-379 translation from Algebra Anal. 27 2015 6-50. (2016) Zbl1335.49057MR3570955DOI10.1090/spmj/1392
  4. Colombo, M., Mingione, G., 10.1007/s00205-014-0785-2, Arch. Ration. Mech. Anal. 215 (2015), 443-496. (2015) Zbl1322.49065MR3294408DOI10.1007/s00205-014-0785-2
  5. Cruz-Uribe, D., Hästö, P., 10.1090/tran/7155, Trans. Am. Math. Soc. 370 (2018), 4323-4349. (2018) Zbl06853979MR3811530DOI10.1090/tran/7155
  6. Diening, L., Harjulehto, P., Hästö, P., Růžička, M., 10.1007/978-3-642-18363-8, Lecture Notes in Mathematics 2017, Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542DOI10.1007/978-3-642-18363-8
  7. Fan, X.-L., Guan, C.-X., 10.1016/j.na.2010.03.010, Nonlinear Anal., Theory Methods Appl., Ser. A 73 (2010), 163-175. (2010) Zbl1198.46010MR2645841DOI10.1016/j.na.2010.03.010
  8. Gwiazda, P., Wittbold, P., Wróblewska-Kamińska, A., Zimmermann, A., 10.1016/j.na.2015.08.017, Nonlinear Anal., Theory Methods Appl., Ser. A 129 (2015), 1-36. (2015) Zbl1331.35173MR3414919DOI10.1016/j.na.2015.08.017
  9. Harjulehto, P., Hästö, P., 10.1515/forum-2015-0239, Forum Math. 29 (2017), 229-244. (2017) MR3592600DOI10.1515/forum-2015-0239
  10. Harjulehto, P., Hästö, P., Klén, R., 10.1016/j.na.2016.05.002, Nonlinear Anal., Theory Methods Appl., Ser. A 143 (2016), 155-173. (2016) Zbl1360.46029MR3516828DOI10.1016/j.na.2016.05.002
  11. Harjulehto, P., Hästö, P., Toivanen, O., 10.1007/s00526-017-1114-z, Calc. Var. Partial Differ. Equ. 56 (2017), Article No. 2, 26 pages. (2017) Zbl1366.35036MR3606780DOI10.1007/s00526-017-1114-z
  12. Hästö, P., 10.1016/j.jfa.2015.10.002, J. Funct. Anal. 269 (2015), 4038-4048. (2015) Zbl1338.47032MR3418078DOI10.1016/j.jfa.2015.10.002
  13. Hudzik, H., Uniform convexity of Musielak-Orlicz spaces with Luxemburg's norm, Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 23 (1983), 21-32. (1983) Zbl0595.46027MR0709167
  14. Hudzik, H., A criterion of uniform convexity of Musielak-Orlicz spaces with Luxemburg norm, Bull. Pol. Acad. Sci., Math. 32 (1984), 303-313. (1984) Zbl0565.46020MR0785989
  15. Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T., 10.1016/j.bulsci.2012.03.008, Bull. Sci. Math. 137 (2013), 76-96. (2013) Zbl1267.46045MR3007101DOI10.1016/j.bulsci.2012.03.008
  16. Musielak, J., 10.1007/BFb0072210, Lecture Notes in Mathematics 1034, Springer, Berlin (1983). (1983) Zbl0557.46020MR0724434DOI10.1007/BFb0072210
  17. Ok, J., 10.1007/s00526-016-0965-z, Calc. Var. Partial Differ. Equ. 55 (2016), Article No. 26, 30 pages. (2016) Zbl1342.35090MR3465442DOI10.1007/s00526-016-0965-z
  18. Rao, M. M., Ren, Z. D., Theory of Orlicz Spaces, Pure and Applied Mathematics 146, Marcel Dekker, New York (1991). (1991) Zbl0724.46032MR1113700

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.