Existence, Consistency and computer simulation for selected variants of minimum distance estimators
Václav Kůs; Domingo Morales; Jitka Hrabáková; Iva Frýdlová
Kybernetika (2018)
- Volume: 54, Issue: 2, page 336-350
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topReferences
top- Mohamad, D. Al, 10.1007/s00362-016-0812-5, Statistical Papers (published on-line 2016.) DOI10.1007/s00362-016-0812-5
- Barron, A. R., The convergence in information of probability density estimators., In: IEEE Int. Symp. Information Theory, Kobe 1988.
- Beran, R., 10.1214/aos/1176343842, Ann. Statist. 5 (1977), 455-463. MR0448700DOI10.1214/aos/1176343842
- Berger, A., 10.1214/aoms/1177729701, An. Math. Statist. 22 (1951), 119-120. MR0039789DOI10.1214/aoms/1177729701
- Broniatowski, M., Toma, A., Vajda, I., 10.1016/j.jspi.2012.03.019, J. Statist. Plann. Inference. 142 (2012), 9, 2574-2585. MR2922007DOI10.1016/j.jspi.2012.03.019
- Csiszár, I., Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizit on Markhoffschen Ketten., Publ. Math. Inst. Hungar. Acad. Sci., Ser. A 8 (1963), 84-108. MR0164374
- Csiszár, I., Information-type measures of difference of probability distributions and indirect observations., Studia Sci. Math. Hungar. 2 (1967), 299-318. MR0219345
- Frýdlová, I., Vajda, I., Kůs, V., Modified power divergence estimators in normal model - simulation and comparative study., Kybernetika 48 (2012), 4, 795-808. MR3013399
- Gibbs, A. L., Su, F. E., 10.1111/j.1751-5823.2002.tb00178.x, Int. Statist. Rev. 70 (2002), 419-435. DOI10.1111/j.1751-5823.2002.tb00178.x
- Győrfi, L., Vajda, I., Meulen, E. C. van der, Family of point estimates yielded by -consistent density estimate., In: -Statistical Analysis and Related Methods (Y. Dodge, ed.), Elsevier, Amsterdam 1992, pp. 415-430. MR1214843
- Győrfi, L., Vajda, I., Meulen, E. C. van der, Minimum Hellinger distance point estimates consistent under weak family regularity., Math. Methods Statist. 3 (1994), 25-45. MR1272629
- Győrfi, L., Vajda, I., Meulen, E. C. van der, 10.1007/bf02613911, Metrika 43 (1996), 237-255. MR1394805DOI10.1007/bf02613911
- Hrabáková, J., Kůs, V., 10.1080/03610926.2013.802806, Comm. Statist. - Theory and Methods 42 (2013), 20, 3665-3677. MR3170957DOI10.1080/03610926.2013.802806
- Hrabáková, J., Kůs, V., 10.1007/s00184-016-0601-0, Metrika 80 (2017), 243-257. MR3597584DOI10.1007/s00184-016-0601-0
- Kafka, P., Ősterreicher, F., Vincze, I., On powers of -divergences defining a distance., Studia Sci. Mathem. Hungarica 26 (1991), 415-422. MR1197090
- Kůs, V., Blended -divergences with examples., Kybernetika 39 (2003), 43-54. MR1980123
- Kůs, V., 10.1007/s001840300286, Metrika 60 (2004), 1-14. MR2100162DOI10.1007/s001840300286
- Kůs, V., Morales, D., Vajda, I., Extensions of the parametric families of divergences used in statistical inference., Kybernetika 44 (2008), 1, 95-112. MR2405058
- Cam, L. Le, 10.1007/978-1-4612-4946-7, Springer, New York 1986. MR0856411DOI10.1007/978-1-4612-4946-7
- Liese, F., Vajda, I., Convex Statistical Distances., Teubner, Leipzig 1987. MR0926905
- Liese, F., Vajda, I., 10.1109/tit.2006.881731, IEEE Trans. Inform. Theory 52 (2006), 4394-4412. MR2300826DOI10.1109/tit.2006.881731
- Matusita, K., 10.1007/bf02868578, Ann. Inst. Statist. Math. 16 (1964), 305-315. MR0172419DOI10.1007/bf02868578
- Ősterreicher, F., On a class of perimeter-type distances of probability distributions., Kybernetika 32 (1996), 4, 389-393. MR1420130
- Pardo, L., 10.1201/9781420034813, Chapman and Hall, Boston 2006. MR2183173DOI10.1201/9781420034813
- Pfanzagl, J., 10.1515/9783110889765, W. de Gruyter, Berlin 1994. MR1291393DOI10.1515/9783110889765
- Vajda, I., Theory of Statistical Inference and Information., Kluwer, Boston 1989.