Existence, Consistency and computer simulation for selected variants of minimum distance estimators
Václav Kůs; Domingo Morales; Jitka Hrabáková; Iva Frýdlová
Kybernetika (2018)
- Volume: 54, Issue: 2, page 336-350
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKůs, Václav, et al. "Existence, Consistency and computer simulation for selected variants of minimum distance estimators." Kybernetika 54.2 (2018): 336-350. <http://eudml.org/doc/294169>.
@article{Kůs2018,
abstract = {The paper deals with sufficient conditions for the existence of general approximate minimum distance estimator (AMDE) of a probability density function $f_0$ on the real line. It shows that the AMDE always exists when the bounded $\phi $-divergence, Kolmogorov, Lévy, Cramér, or discrepancy distance is used. Consequently, $n^\{-1/2\}$ consistency rate in any bounded $\phi $-divergence is established for Kolmogorov, Lévy, and discrepancy estimators under the condition that the degree of variations of the corresponding family of densities is finite. A simulation experiment empirically studies the performance of the approximate minimum Kolmogorov estimator (AMKE) and some histogram-based variants of approximate minimum divergence estimators, like power type and Le Cam, under six distributions (Uniform, Normal, Logistic, Laplace, Cauchy, Weibull). A comparison with the standard estimators (moment/maximum likelihood/median) is provided for sample sizes $n=10,20,50,120,250$. The simulation analyzes the behaviour of estimators through different families of distributions. It is shown that the performance of AMKE differs from the other estimators with respect to family type and that the AMKE estimators cope more easily with the Cauchy distribution than standard or divergence based estimators, especially for small sample sizes.},
author = {Kůs, Václav, Morales, Domingo, Hrabáková, Jitka, Frýdlová, Iva},
journal = {Kybernetika},
keywords = {Kolmogorov distance; $\phi $-divergence; minimum distance estimator; consistency rate; computer simulation},
language = {eng},
number = {2},
pages = {336-350},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Existence, Consistency and computer simulation for selected variants of minimum distance estimators},
url = {http://eudml.org/doc/294169},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Kůs, Václav
AU - Morales, Domingo
AU - Hrabáková, Jitka
AU - Frýdlová, Iva
TI - Existence, Consistency and computer simulation for selected variants of minimum distance estimators
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 2
SP - 336
EP - 350
AB - The paper deals with sufficient conditions for the existence of general approximate minimum distance estimator (AMDE) of a probability density function $f_0$ on the real line. It shows that the AMDE always exists when the bounded $\phi $-divergence, Kolmogorov, Lévy, Cramér, or discrepancy distance is used. Consequently, $n^{-1/2}$ consistency rate in any bounded $\phi $-divergence is established for Kolmogorov, Lévy, and discrepancy estimators under the condition that the degree of variations of the corresponding family of densities is finite. A simulation experiment empirically studies the performance of the approximate minimum Kolmogorov estimator (AMKE) and some histogram-based variants of approximate minimum divergence estimators, like power type and Le Cam, under six distributions (Uniform, Normal, Logistic, Laplace, Cauchy, Weibull). A comparison with the standard estimators (moment/maximum likelihood/median) is provided for sample sizes $n=10,20,50,120,250$. The simulation analyzes the behaviour of estimators through different families of distributions. It is shown that the performance of AMKE differs from the other estimators with respect to family type and that the AMKE estimators cope more easily with the Cauchy distribution than standard or divergence based estimators, especially for small sample sizes.
LA - eng
KW - Kolmogorov distance; $\phi $-divergence; minimum distance estimator; consistency rate; computer simulation
UR - http://eudml.org/doc/294169
ER -
References
top- Mohamad, D. Al, 10.1007/s00362-016-0812-5, Statistical Papers (published on-line 2016.) DOI10.1007/s00362-016-0812-5
- Barron, A. R., The convergence in information of probability density estimators., In: IEEE Int. Symp. Information Theory, Kobe 1988.
- Beran, R., 10.1214/aos/1176343842, Ann. Statist. 5 (1977), 455-463. MR0448700DOI10.1214/aos/1176343842
- Berger, A., 10.1214/aoms/1177729701, An. Math. Statist. 22 (1951), 119-120. MR0039789DOI10.1214/aoms/1177729701
- Broniatowski, M., Toma, A., Vajda, I., 10.1016/j.jspi.2012.03.019, J. Statist. Plann. Inference. 142 (2012), 9, 2574-2585. MR2922007DOI10.1016/j.jspi.2012.03.019
- Csiszár, I., Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizit on Markhoffschen Ketten., Publ. Math. Inst. Hungar. Acad. Sci., Ser. A 8 (1963), 84-108. MR0164374
- Csiszár, I., Information-type measures of difference of probability distributions and indirect observations., Studia Sci. Math. Hungar. 2 (1967), 299-318. MR0219345
- Frýdlová, I., Vajda, I., Kůs, V., Modified power divergence estimators in normal model - simulation and comparative study., Kybernetika 48 (2012), 4, 795-808. MR3013399
- Gibbs, A. L., Su, F. E., 10.1111/j.1751-5823.2002.tb00178.x, Int. Statist. Rev. 70 (2002), 419-435. DOI10.1111/j.1751-5823.2002.tb00178.x
- Győrfi, L., Vajda, I., Meulen, E. C. van der, Family of point estimates yielded by -consistent density estimate., In: -Statistical Analysis and Related Methods (Y. Dodge, ed.), Elsevier, Amsterdam 1992, pp. 415-430. MR1214843
- Győrfi, L., Vajda, I., Meulen, E. C. van der, Minimum Hellinger distance point estimates consistent under weak family regularity., Math. Methods Statist. 3 (1994), 25-45. MR1272629
- Győrfi, L., Vajda, I., Meulen, E. C. van der, 10.1007/bf02613911, Metrika 43 (1996), 237-255. MR1394805DOI10.1007/bf02613911
- Hrabáková, J., Kůs, V., 10.1080/03610926.2013.802806, Comm. Statist. - Theory and Methods 42 (2013), 20, 3665-3677. MR3170957DOI10.1080/03610926.2013.802806
- Hrabáková, J., Kůs, V., 10.1007/s00184-016-0601-0, Metrika 80 (2017), 243-257. MR3597584DOI10.1007/s00184-016-0601-0
- Kafka, P., Ősterreicher, F., Vincze, I., On powers of -divergences defining a distance., Studia Sci. Mathem. Hungarica 26 (1991), 415-422. MR1197090
- Kůs, V., Blended -divergences with examples., Kybernetika 39 (2003), 43-54. MR1980123
- Kůs, V., 10.1007/s001840300286, Metrika 60 (2004), 1-14. MR2100162DOI10.1007/s001840300286
- Kůs, V., Morales, D., Vajda, I., Extensions of the parametric families of divergences used in statistical inference., Kybernetika 44 (2008), 1, 95-112. MR2405058
- Cam, L. Le, 10.1007/978-1-4612-4946-7, Springer, New York 1986. MR0856411DOI10.1007/978-1-4612-4946-7
- Liese, F., Vajda, I., Convex Statistical Distances., Teubner, Leipzig 1987. MR0926905
- Liese, F., Vajda, I., 10.1109/tit.2006.881731, IEEE Trans. Inform. Theory 52 (2006), 4394-4412. MR2300826DOI10.1109/tit.2006.881731
- Matusita, K., 10.1007/bf02868578, Ann. Inst. Statist. Math. 16 (1964), 305-315. MR0172419DOI10.1007/bf02868578
- Ősterreicher, F., On a class of perimeter-type distances of probability distributions., Kybernetika 32 (1996), 4, 389-393. MR1420130
- Pardo, L., 10.1201/9781420034813, Chapman and Hall, Boston 2006. MR2183173DOI10.1201/9781420034813
- Pfanzagl, J., 10.1515/9783110889765, W. de Gruyter, Berlin 1994. MR1291393DOI10.1515/9783110889765
- Vajda, I., Theory of Statistical Inference and Information., Kluwer, Boston 1989.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.