A Study on φ -recurrence τ -curvature tensor in ( k , μ ) -contact metric manifolds

Gurupadavva Ingalahalli; C.S. Bagewadi

Communications in Mathematics (2018)

  • Volume: 26, Issue: 2, page 127-136
  • ISSN: 1804-1388

Abstract

top
In this paper we study φ -recurrence τ -curvature tensor in ( k , μ ) -contact metric manifolds.

How to cite

top

Ingalahalli, Gurupadavva, and Bagewadi, C.S.. "A Study on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds." Communications in Mathematics 26.2 (2018): 127-136. <http://eudml.org/doc/294189>.

@article{Ingalahalli2018,
abstract = {In this paper we study $\phi $-recurrence $\tau $-curvature tensor in$(k,\mu )$-contact metric manifolds.},
author = {Ingalahalli, Gurupadavva, Bagewadi, C.S.},
journal = {Communications in Mathematics},
keywords = {Contact metric manifold; curvature tensor; Ricci tensor; Ricci operator},
language = {eng},
number = {2},
pages = {127-136},
publisher = {University of Ostrava},
title = {A Study on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds},
url = {http://eudml.org/doc/294189},
volume = {26},
year = {2018},
}

TY - JOUR
AU - Ingalahalli, Gurupadavva
AU - Bagewadi, C.S.
TI - A Study on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds
JO - Communications in Mathematics
PY - 2018
PB - University of Ostrava
VL - 26
IS - 2
SP - 127
EP - 136
AB - In this paper we study $\phi $-recurrence $\tau $-curvature tensor in$(k,\mu )$-contact metric manifolds.
LA - eng
KW - Contact metric manifold; curvature tensor; Ricci tensor; Ricci operator
UR - http://eudml.org/doc/294189
ER -

References

top
  1. Blair, D.E., 10.1007/BFb0079308, 1976, Springer-Verlag, Berlin-New-York, Lecture Notes in Mathematics 509. (1976) MR0467588DOI10.1007/BFb0079308
  2. Blair, D.E., Koufogiorgos, T., Papantoniou, B.J., 10.1007/BF02761646, Israel J. Math., 91, 1995, 189-214, (1995) Zbl0837.53038MR1348312DOI10.1007/BF02761646
  3. Boeckx, E., Buecken, P., Vanhecke, L., 10.1017/S0017089599000579, Glasgow Math. J., 41, 1999, 409-416, (1999) MR1720426DOI10.1017/S0017089599000579
  4. De, U.C., Gazi, A.K., On φ -recurrent N ( k ) -contact metric manifolds, Math. J. Okayama Univ., 50, 2008, 101-112, (2008) MR2376549
  5. De, U.C., Shaikh, A.A., Biswas, S., On φ -recurrent Sasakian manifolds, Novi Sad J. Math., 33, 2003, 13-48, (2003) MR2046161
  6. Nagaraja, H.G., Somashekhara, G., τ -curvature tensor in ( k , μ ) -contact metric manifolds, Mathematica Aeterna, 2, 6, 2012, 523-532, (2012) MR2969174
  7. Papantonion, B.J., Contact Riemannian manifolds satisfying R ( ξ , X ) · R = 0 and ξ ( k , μ ) -nullity distribution, Yokohama Math. J., 40, 2, 1993, 149-161, (1993) MR1216349
  8. Premalatha, C.R., Nagaraja, H.G., On Generalized ( k , μ ) -space forms, Journal of Tensor Society, 7, 2013, 29-38, (2013) MR3676345
  9. Shaikh, A.A., Baishya, K.K., On ( k , μ ) -contact metric manifolds, Differential Geometry - Dynamical Systems, 8, 2006, 253-261, (2006) MR2220732
  10. Sharma, R., Blair, D.E., 10.1215/ijm/1255985467, Illinois J. Math., 42, 1998, 673-677, (1998) MR1649889DOI10.1215/ijm/1255985467
  11. Tanno, S., 10.2748/tmj/1178227985, Tohoku Math. J., 40, 1988, 441-448, (1988) Zbl0655.53035MR0957055DOI10.2748/tmj/1178227985
  12. Takahashi, T., 10.2748/tmj/1178240699, Tohoku Math. J., 29, 1977, 91-113, (1977) MR0440472DOI10.2748/tmj/1178240699
  13. Tripathi, M.M., Gupta, P., τ -curvature tensor on a semi-Riemannian manifold, J. Adv. Math. Stud., 4, 1, 2011, 117-129, (2011) MR2808047
  14. Tripathi, M.M., Gupta, P., On τ -curvature tensor in K-contact and Sasakian manifolds, International Electronic Journal of Geometry, 4, 2011, 32-47, (2011) MR2801462
  15. Tripathi, M.M., Gupta, P., ( N ( k ) , ξ ) -semi-Riemannian manifolds: Semisymmetries, arXiv:1202.6138v[math.DG], 28, 2012, (2012) MR2915487

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.