Some constructions of biharmonic maps on the warped product manifolds

Abdelmadjid Bennouar; Seddik Ouakkas

Commentationes Mathematicae Universitatis Carolinae (2017)

  • Volume: 58, Issue: 4, page 481-500
  • ISSN: 0010-2628

Abstract

top
In this paper, we characterize a class of biharmonic maps from and between product manifolds in terms of the warping function. Examples are constructed when one of the factors is either Euclidean space or sphere.

How to cite

top

Bennouar, Abdelmadjid, and Ouakkas, Seddik. "Some constructions of biharmonic maps on the warped product manifolds." Commentationes Mathematicae Universitatis Carolinae 58.4 (2017): 481-500. <http://eudml.org/doc/294190>.

@article{Bennouar2017,
abstract = {In this paper, we characterize a class of biharmonic maps from and between product manifolds in terms of the warping function. Examples are constructed when one of the factors is either Euclidean space or sphere.},
author = {Bennouar, Abdelmadjid, Ouakkas, Seddik},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {harmonic map; biharmonic map; warped product},
language = {eng},
number = {4},
pages = {481-500},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some constructions of biharmonic maps on the warped product manifolds},
url = {http://eudml.org/doc/294190},
volume = {58},
year = {2017},
}

TY - JOUR
AU - Bennouar, Abdelmadjid
AU - Ouakkas, Seddik
TI - Some constructions of biharmonic maps on the warped product manifolds
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 4
SP - 481
EP - 500
AB - In this paper, we characterize a class of biharmonic maps from and between product manifolds in terms of the warping function. Examples are constructed when one of the factors is either Euclidean space or sphere.
LA - eng
KW - harmonic map; biharmonic map; warped product
UR - http://eudml.org/doc/294190
ER -

References

top
  1. Baird P., Harmonic maps with symmetry, harmonic morphisms and deformation of metrics, Pitman Books Limited, Boston, MA, 1983, pp. 27–39. MR0716320
  2. Baird P., Eells J., 10.1007/BFb0096222, Lecture Notes in Math., 894, Springer, Berlin-New York, 1981, pp. 1–25. Zbl0485.58008MR0655417DOI10.1007/BFb0096222
  3. Baird P., Wood J.C., Harmonic Morphisms between Riemannian Manifolds, London Mathematical Society Monographs, 29, Oxford University Press, Oxford, 2003. Zbl1055.53049MR2044031
  4. Baird P., Kamissoko D., 10.1023/A:1021213930520, Ann. Global Anal. Geom. 23 (2003), 65–75. Zbl1027.31004MR1952859DOI10.1023/A:1021213930520
  5. Baird P., Fardoun A., Ouakkas S., 10.1007/s10455-008-9118-8, Ann. Global Anal. Geom. 34 (2008), 403–414. Zbl1158.53049MR2447908DOI10.1007/s10455-008-9118-8
  6. Balmus A., Biharmonic properties and conformal changes, An. Stiint. Univ. Al. I. Cuza Iasi Mat. (N.S.) 50 (2004), 361–372. Zbl1070.58016MR2131943
  7. Balmus A., Montaldo S., Oniciuc C., 10.1016/j.geomphys.2006.03.012, J. Geom. Phys. 57 (2008), 449–466. Zbl1108.58011MR2271198DOI10.1016/j.geomphys.2006.03.012
  8. Bertola M., Gouthier D., Lie triple systems and warped products, Rend. Mat. Appl. (7) 21 (2001), 275–293. Zbl1057.53020MR1884948
  9. Eells J., Lemaire L., 10.1112/blms/10.1.1, Bull. London Math. Soc. 16 (1978), 1–68. Zbl0401.58003MR0495450DOI10.1112/blms/10.1.1
  10. Eells J., Lemaire L., 10.1112/blms/20.5.385, Bull. London Math. Soc. 20 (1988), 385–524. Zbl0669.58009MR0956352DOI10.1112/blms/20.5.385
  11. Eells J., Lemaire L., Selected Topics in Harmonic Maps, CNMS Regional Conference Series of the National Sciences Foundation, November 1981. Zbl0515.58011MR0703510
  12. Eells J., Ratto A., Harmonic Maps and Minimal Immersions with Symmetries, Princeton University Press, Princeton, NJ, 1993. Zbl0783.58003MR1242555
  13. Jiang G.Y., 2 -harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A 7 (1986), 389–402. Zbl1200.58015MR0886529
  14. Djaa N.E.H., Boulal A., Zagane A., Generalized warped product manifolds and biharmonic maps, Acta Math. Univ. Comenian. 81 (2012), no. 2, 283–298. Zbl1274.53093MR2975295
  15. Lu W.J., Geometry of warped product manifolds and its five applications, PhD Thesis, Zhejiang University, 2013. 
  16. Lu W.J., 10.1007/s11766-013-2969-1, Appl. Math. J. Chinese Univ. Ser. B 28 (2013), no. 2, 240–252. MR3066461DOI10.1007/s11766-013-2969-1
  17. Oniciuc C., 10.4064/cm97-1-12, Colloq. Math. 97 (2003), 131–139. Zbl1058.58003MR2010548DOI10.4064/cm97-1-12
  18. Ouakkas S., 10.1016/j.difgeo.2008.04.006, Diff. Geom. Appl. 26 (2008), 495–502. Zbl1159.58009MR2458275DOI10.1016/j.difgeo.2008.04.006
  19. Ou Y.-L., 10.1016/j.geomphys.2005.02.005, J. Geom. Phys. 56 (2006), no. 3, 358–374. MR2171890DOI10.1016/j.geomphys.2005.02.005
  20. Perktas S.Y., Kilic E., Biharmonic maps between doubly warped product manifolds, Balkan J. Geom. Appl. 15 (2010), no. 2, 159–170. Zbl1225.58008MR2608547

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.