Some constructions of biharmonic maps on the warped product manifolds
Abdelmadjid Bennouar; Seddik Ouakkas
Commentationes Mathematicae Universitatis Carolinae (2017)
- Volume: 58, Issue: 4, page 481-500
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBennouar, Abdelmadjid, and Ouakkas, Seddik. "Some constructions of biharmonic maps on the warped product manifolds." Commentationes Mathematicae Universitatis Carolinae 58.4 (2017): 481-500. <http://eudml.org/doc/294190>.
@article{Bennouar2017,
abstract = {In this paper, we characterize a class of biharmonic maps from and between product manifolds in terms of the warping function. Examples are constructed when one of the factors is either Euclidean space or sphere.},
author = {Bennouar, Abdelmadjid, Ouakkas, Seddik},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {harmonic map; biharmonic map; warped product},
language = {eng},
number = {4},
pages = {481-500},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some constructions of biharmonic maps on the warped product manifolds},
url = {http://eudml.org/doc/294190},
volume = {58},
year = {2017},
}
TY - JOUR
AU - Bennouar, Abdelmadjid
AU - Ouakkas, Seddik
TI - Some constructions of biharmonic maps on the warped product manifolds
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 4
SP - 481
EP - 500
AB - In this paper, we characterize a class of biharmonic maps from and between product manifolds in terms of the warping function. Examples are constructed when one of the factors is either Euclidean space or sphere.
LA - eng
KW - harmonic map; biharmonic map; warped product
UR - http://eudml.org/doc/294190
ER -
References
top- Baird P., Harmonic maps with symmetry, harmonic morphisms and deformation of metrics, Pitman Books Limited, Boston, MA, 1983, pp. 27–39. MR0716320
- Baird P., Eells J., 10.1007/BFb0096222, Lecture Notes in Math., 894, Springer, Berlin-New York, 1981, pp. 1–25. Zbl0485.58008MR0655417DOI10.1007/BFb0096222
- Baird P., Wood J.C., Harmonic Morphisms between Riemannian Manifolds, London Mathematical Society Monographs, 29, Oxford University Press, Oxford, 2003. Zbl1055.53049MR2044031
- Baird P., Kamissoko D., 10.1023/A:1021213930520, Ann. Global Anal. Geom. 23 (2003), 65–75. Zbl1027.31004MR1952859DOI10.1023/A:1021213930520
- Baird P., Fardoun A., Ouakkas S., 10.1007/s10455-008-9118-8, Ann. Global Anal. Geom. 34 (2008), 403–414. Zbl1158.53049MR2447908DOI10.1007/s10455-008-9118-8
- Balmus A., Biharmonic properties and conformal changes, An. Stiint. Univ. Al. I. Cuza Iasi Mat. (N.S.) 50 (2004), 361–372. Zbl1070.58016MR2131943
- Balmus A., Montaldo S., Oniciuc C., 10.1016/j.geomphys.2006.03.012, J. Geom. Phys. 57 (2008), 449–466. Zbl1108.58011MR2271198DOI10.1016/j.geomphys.2006.03.012
- Bertola M., Gouthier D., Lie triple systems and warped products, Rend. Mat. Appl. (7) 21 (2001), 275–293. Zbl1057.53020MR1884948
- Eells J., Lemaire L., 10.1112/blms/10.1.1, Bull. London Math. Soc. 16 (1978), 1–68. Zbl0401.58003MR0495450DOI10.1112/blms/10.1.1
- Eells J., Lemaire L., 10.1112/blms/20.5.385, Bull. London Math. Soc. 20 (1988), 385–524. Zbl0669.58009MR0956352DOI10.1112/blms/20.5.385
- Eells J., Lemaire L., Selected Topics in Harmonic Maps, CNMS Regional Conference Series of the National Sciences Foundation, November 1981. Zbl0515.58011MR0703510
- Eells J., Ratto A., Harmonic Maps and Minimal Immersions with Symmetries, Princeton University Press, Princeton, NJ, 1993. Zbl0783.58003MR1242555
- Jiang G.Y., -harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A 7 (1986), 389–402. Zbl1200.58015MR0886529
- Djaa N.E.H., Boulal A., Zagane A., Generalized warped product manifolds and biharmonic maps, Acta Math. Univ. Comenian. 81 (2012), no. 2, 283–298. Zbl1274.53093MR2975295
- Lu W.J., Geometry of warped product manifolds and its five applications, PhD Thesis, Zhejiang University, 2013.
- Lu W.J., 10.1007/s11766-013-2969-1, Appl. Math. J. Chinese Univ. Ser. B 28 (2013), no. 2, 240–252. MR3066461DOI10.1007/s11766-013-2969-1
- Oniciuc C., 10.4064/cm97-1-12, Colloq. Math. 97 (2003), 131–139. Zbl1058.58003MR2010548DOI10.4064/cm97-1-12
- Ouakkas S., 10.1016/j.difgeo.2008.04.006, Diff. Geom. Appl. 26 (2008), 495–502. Zbl1159.58009MR2458275DOI10.1016/j.difgeo.2008.04.006
- Ou Y.-L., 10.1016/j.geomphys.2005.02.005, J. Geom. Phys. 56 (2006), no. 3, 358–374. MR2171890DOI10.1016/j.geomphys.2005.02.005
- Perktas S.Y., Kilic E., Biharmonic maps between doubly warped product manifolds, Balkan J. Geom. Appl. 15 (2010), no. 2, 159–170. Zbl1225.58008MR2608547
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.