Certain simple maximal subfields in division rings

Mehdi Aaghabali; Mai Hoang Bien

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 4, page 1053-1060
  • ISSN: 0011-4642

Abstract

top
Let D be a division ring finite dimensional over its center F . The goal of this paper is to prove that for any positive integer n there exists a D ( n ) , the n th multiplicative derived subgroup such that F ( a ) is a maximal subfield of D . We also show that a single depth- n iterated additive commutator would generate a maximal subfield of D .

How to cite

top

Aaghabali, Mehdi, and Bien, Mai Hoang. "Certain simple maximal subfields in division rings." Czechoslovak Mathematical Journal 69.4 (2019): 1053-1060. <http://eudml.org/doc/294200>.

@article{Aaghabali2019,
abstract = {Let $D$ be a division ring finite dimensional over its center $F$. The goal of this paper is to prove that for any positive integer $n$ there exists $a\in D^\{(n)\},$ the $n$th multiplicative derived subgroup such that $F(a)$ is a maximal subfield of $D$. We also show that a single depth-$n$ iterated additive commutator would generate a maximal subfield of $D.$},
author = {Aaghabali, Mehdi, Bien, Mai Hoang},
journal = {Czechoslovak Mathematical Journal},
keywords = {division ring; rational identity; maximal subfield},
language = {eng},
number = {4},
pages = {1053-1060},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Certain simple maximal subfields in division rings},
url = {http://eudml.org/doc/294200},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Aaghabali, Mehdi
AU - Bien, Mai Hoang
TI - Certain simple maximal subfields in division rings
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 1053
EP - 1060
AB - Let $D$ be a division ring finite dimensional over its center $F$. The goal of this paper is to prove that for any positive integer $n$ there exists $a\in D^{(n)},$ the $n$th multiplicative derived subgroup such that $F(a)$ is a maximal subfield of $D$. We also show that a single depth-$n$ iterated additive commutator would generate a maximal subfield of $D.$
LA - eng
KW - division ring; rational identity; maximal subfield
UR - http://eudml.org/doc/294200
ER -

References

top
  1. Aaghabali, M., Akbari, S., Bien, M. H., 10.1007/s10468-017-9739-3, Algebr. Represent. Theory 21 (2018), 807-816. (2018) Zbl1397.17004MR3826728DOI10.1007/s10468-017-9739-3
  2. Albert, A. A., Muckenhoupt, B., 10.1307/mmj/1028990168, Mich. Math. J. 4 (1957), 1-3. (1957) Zbl0077.24304MR0083961DOI10.1307/mmj/1028990168
  3. Amitsur, S. A., 10.1016/0021-8693(66)90004-4, J. Algebra 3 (1966), 304-359. (1966) Zbl0203.04003MR0191912DOI10.1016/0021-8693(66)90004-4
  4. Amitsur, S. A., Rowen, L. H., 10.1007/BF02772992, Isr. J. Math. 87 (1994), 161-179. (1994) Zbl0852.16012MR1286824DOI10.1007/BF02772992
  5. Beidar, K. I., Martindale, W. S., III, Mikhalev, A. V., Rings with Generalized Identities, Pure and Applied Mathematics 196, Marcel Dekker, New York (1996). (1996) Zbl0847.16001MR1368853
  6. Chebotar, M. A., Fong, Y., Lee, P.-H., 10.1007/s00229-003-0430-0, Manuscr. Math. 113 (2004), 153-164. (2004) Zbl1054.16012MR2128544DOI10.1007/s00229-003-0430-0
  7. Chiba, K., 10.1090/S0002-9939-96-03127-9, Proc. Am. Math. Soc. 124 (1996), 1649-1653. (1996) Zbl0859.16014MR1301016DOI10.1090/S0002-9939-96-03127-9
  8. Hai, B. X., Dung, T. H., Bien, M. H., Almost subnormal subgroups in division rings with generalized algebraic rational identities, Available at https://arxiv.org/abs/1709.04774. 
  9. Lam, T. Y., 10.1007/978-1-4419-8616-0, Graduate Texts in Mathematics 131, Springer, New York (2001). (2001) Zbl0980.16001MR1838439DOI10.1007/978-1-4419-8616-0
  10. Mahdavi-Hezavehi, M., 10.1080/00927879508825257, Commun. Algebra 23 (1995), 913-926. (1995) Zbl0833.16014MR1316740DOI10.1080/00927879508825257
  11. Mahdavi-Hezavehi, M., Commutators in division rings revisited, Bull. Iran. Math. Soc. 26 (2000), 7-88. (2000) Zbl0983.16012MR1828953
  12. Mahdavi-Hezavehi, M., Akbari-Feyzaabaadi, S., Mehraabaadi, M., Hajie-Abolhassan, H., 10.1080/00927879508825374, Commun. Algebra 23 (1995), 2881-2887. (1995) Zbl0866.16012MR1332151DOI10.1080/00927879508825374
  13. Thompson, R. C., 10.1090/S0002-9947-1961-0130917-7, Trans. Am. Math. Soc. 101 (1961), 16-33. (1961) Zbl0109.26002MR0130917DOI10.1090/S0002-9947-1961-0130917-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.