Certain simple maximal subfields in division rings
Mehdi Aaghabali; Mai Hoang Bien
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 4, page 1053-1060
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAaghabali, Mehdi, and Bien, Mai Hoang. "Certain simple maximal subfields in division rings." Czechoslovak Mathematical Journal 69.4 (2019): 1053-1060. <http://eudml.org/doc/294200>.
@article{Aaghabali2019,
abstract = {Let $D$ be a division ring finite dimensional over its center $F$. The goal of this paper is to prove that for any positive integer $n$ there exists $a\in D^\{(n)\},$ the $n$th multiplicative derived subgroup such that $F(a)$ is a maximal subfield of $D$. We also show that a single depth-$n$ iterated additive commutator would generate a maximal subfield of $D.$},
author = {Aaghabali, Mehdi, Bien, Mai Hoang},
journal = {Czechoslovak Mathematical Journal},
keywords = {division ring; rational identity; maximal subfield},
language = {eng},
number = {4},
pages = {1053-1060},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Certain simple maximal subfields in division rings},
url = {http://eudml.org/doc/294200},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Aaghabali, Mehdi
AU - Bien, Mai Hoang
TI - Certain simple maximal subfields in division rings
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 1053
EP - 1060
AB - Let $D$ be a division ring finite dimensional over its center $F$. The goal of this paper is to prove that for any positive integer $n$ there exists $a\in D^{(n)},$ the $n$th multiplicative derived subgroup such that $F(a)$ is a maximal subfield of $D$. We also show that a single depth-$n$ iterated additive commutator would generate a maximal subfield of $D.$
LA - eng
KW - division ring; rational identity; maximal subfield
UR - http://eudml.org/doc/294200
ER -
References
top- Aaghabali, M., Akbari, S., Bien, M. H., 10.1007/s10468-017-9739-3, Algebr. Represent. Theory 21 (2018), 807-816. (2018) Zbl1397.17004MR3826728DOI10.1007/s10468-017-9739-3
- Albert, A. A., Muckenhoupt, B., 10.1307/mmj/1028990168, Mich. Math. J. 4 (1957), 1-3. (1957) Zbl0077.24304MR0083961DOI10.1307/mmj/1028990168
- Amitsur, S. A., 10.1016/0021-8693(66)90004-4, J. Algebra 3 (1966), 304-359. (1966) Zbl0203.04003MR0191912DOI10.1016/0021-8693(66)90004-4
- Amitsur, S. A., Rowen, L. H., 10.1007/BF02772992, Isr. J. Math. 87 (1994), 161-179. (1994) Zbl0852.16012MR1286824DOI10.1007/BF02772992
- Beidar, K. I., Martindale, W. S., III, Mikhalev, A. V., Rings with Generalized Identities, Pure and Applied Mathematics 196, Marcel Dekker, New York (1996). (1996) Zbl0847.16001MR1368853
- Chebotar, M. A., Fong, Y., Lee, P.-H., 10.1007/s00229-003-0430-0, Manuscr. Math. 113 (2004), 153-164. (2004) Zbl1054.16012MR2128544DOI10.1007/s00229-003-0430-0
- Chiba, K., 10.1090/S0002-9939-96-03127-9, Proc. Am. Math. Soc. 124 (1996), 1649-1653. (1996) Zbl0859.16014MR1301016DOI10.1090/S0002-9939-96-03127-9
- Hai, B. X., Dung, T. H., Bien, M. H., Almost subnormal subgroups in division rings with generalized algebraic rational identities, Available at https://arxiv.org/abs/1709.04774.
- Lam, T. Y., 10.1007/978-1-4419-8616-0, Graduate Texts in Mathematics 131, Springer, New York (2001). (2001) Zbl0980.16001MR1838439DOI10.1007/978-1-4419-8616-0
- Mahdavi-Hezavehi, M., 10.1080/00927879508825257, Commun. Algebra 23 (1995), 913-926. (1995) Zbl0833.16014MR1316740DOI10.1080/00927879508825257
- Mahdavi-Hezavehi, M., Commutators in division rings revisited, Bull. Iran. Math. Soc. 26 (2000), 7-88. (2000) Zbl0983.16012MR1828953
- Mahdavi-Hezavehi, M., Akbari-Feyzaabaadi, S., Mehraabaadi, M., Hajie-Abolhassan, H., 10.1080/00927879508825374, Commun. Algebra 23 (1995), 2881-2887. (1995) Zbl0866.16012MR1332151DOI10.1080/00927879508825374
- Thompson, R. C., 10.1090/S0002-9947-1961-0130917-7, Trans. Am. Math. Soc. 101 (1961), 16-33. (1961) Zbl0109.26002MR0130917DOI10.1090/S0002-9947-1961-0130917-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.