Resolving sets of directed Cayley graphs for the direct product of cyclic groups
Demelash Ashagrie Mengesha; Tomáš Vetrík
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 3, page 621-636
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMengesha, Demelash Ashagrie, and Vetrík, Tomáš. "Resolving sets of directed Cayley graphs for the direct product of cyclic groups." Czechoslovak Mathematical Journal 69.3 (2019): 621-636. <http://eudml.org/doc/294201>.
@article{Mengesha2019,
abstract = {A directed Cayley graph $C(\Gamma ,X)$ is specified by a group $\Gamma $ and an identity-free generating set $X$ for this group. Vertices of $C(\Gamma ,X)$ are elements of $\Gamma $ and there is a directed edge from the vertex $u$ to the vertex $v$ in $C(\Gamma ,X)$ if and only if there is a generator $x \in X$ such that $ux = v$. We study graphs $C(\Gamma ,X)$ for the direct product $Z_m \times Z_n$ of two cyclic groups $Z_m$ and $Z_n$, and the generating set $X = \lbrace (0,1), (1, 0), (2,0), \dots , (p,0) \rbrace $. We present resolving sets which yield upper bounds on the metric dimension of these graphs for $p = 2$ and $3$.},
author = {Mengesha, Demelash Ashagrie, Vetrík, Tomáš},
journal = {Czechoslovak Mathematical Journal},
keywords = {metric dimension; resolving set; Cayley graph; direct product; cyclic group},
language = {eng},
number = {3},
pages = {621-636},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Resolving sets of directed Cayley graphs for the direct product of cyclic groups},
url = {http://eudml.org/doc/294201},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Mengesha, Demelash Ashagrie
AU - Vetrík, Tomáš
TI - Resolving sets of directed Cayley graphs for the direct product of cyclic groups
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 621
EP - 636
AB - A directed Cayley graph $C(\Gamma ,X)$ is specified by a group $\Gamma $ and an identity-free generating set $X$ for this group. Vertices of $C(\Gamma ,X)$ are elements of $\Gamma $ and there is a directed edge from the vertex $u$ to the vertex $v$ in $C(\Gamma ,X)$ if and only if there is a generator $x \in X$ such that $ux = v$. We study graphs $C(\Gamma ,X)$ for the direct product $Z_m \times Z_n$ of two cyclic groups $Z_m$ and $Z_n$, and the generating set $X = \lbrace (0,1), (1, 0), (2,0), \dots , (p,0) \rbrace $. We present resolving sets which yield upper bounds on the metric dimension of these graphs for $p = 2$ and $3$.
LA - eng
KW - metric dimension; resolving set; Cayley graph; direct product; cyclic group
UR - http://eudml.org/doc/294201
ER -
References
top- Ahmad, A., Imran, M., Al-Mushayt, O., Bokhary, S. A. U. H., 10.18514/MMN.2015.1192, Miskolc Math. Notes 16 (2016), 637-646. (2016) Zbl1349.05082MR3454129DOI10.18514/MMN.2015.1192
- Chartrand, G., Eroh, L., Johnson, M. A., Oellermann, O. R., 10.1016/S0166-218X(00)00198-0, Discrete Appl. Math. 105 (2000), 99-113. (2000) Zbl0958.05042MR1780464DOI10.1016/S0166-218X(00)00198-0
- Fehr, M., Gosselin, S., Oellermann, O. R., 10.1016/j.disc.2005.09.015, Discrete Math. 306 (2006), 31-41. (2006) Zbl1085.05034MR2202072DOI10.1016/j.disc.2005.09.015
- Harary, F., Melter, R. A., On the metric dimension of a graph, Ars Comb. 2 (1976), 191-195. (1976) Zbl0349.05118MR0457289
- Imran, M., 10.1007/s10255-016-0627-0, Acta Math. Appl. Sin. Engl. Ser. 32 (2016), 1067-1072. (2016) Zbl06700451MR3552871DOI10.1007/s10255-016-0627-0
- Imran, M., Baig, A. Q., Bokhary, S. A. U. H., Javaid, I., 10.1016/j.aml.2011.09.008, Appl. Math. Lett. 25 (2012), 320-325. (2012) Zbl1243.05072MR2855980DOI10.1016/j.aml.2011.09.008
- Javaid, I., Rahim, M. T., Ali, K., Families of regular graphs with constant metric dimension, Util. Math. 75 (2008), 21-33. (2008) Zbl1178.05037MR2389696
- Khuller, S., Raghavachari, B., Rosenfeld, A., 10.1016/0166-218X(95)00106-2, Discrete Appl. Math. 70 (1996), 217-229. (1996) Zbl0865.68090MR1410574DOI10.1016/0166-218X(95)00106-2
- Melter, R. A., Tomescu, I., 10.1016/0734-189X(84)90051-3, Comput. Vision Graphics Image Process 25 (1984), 113-121. (1984) Zbl0591.51023MR0752034DOI10.1016/0734-189X(84)90051-3
- Oellermann, O. R., Pawluck, C. D., Stokke, A., The metric dimension of Cayley digraphs of Abelian groups, Ars Comb. 81 (2006), 97-111. (2006) Zbl1189.05055MR2267805
- Slater, P. J., Leaves of trees, Proc. 6th Southeast. Conf. Combinatorics, Graph Theory and Computing Congressus Numerantium 14, Utilitas Mathematica, Winnipeg (1975), 549-559. (1975) Zbl0316.05102MR0422062
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.