Inclusion relations between harmonic Bergman-Besov and weighted Bloch spaces on the unit ball
Ömer Faruk Doğan; Adem Ersin Üreyen
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 2, page 503-523
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDoğan, Ömer Faruk, and Üreyen, Adem Ersin. "Inclusion relations between harmonic Bergman-Besov and weighted Bloch spaces on the unit ball." Czechoslovak Mathematical Journal 69.2 (2019): 503-523. <http://eudml.org/doc/294210>.
@article{Doğan2019,
abstract = {We consider harmonic Bergman-Besov spaces $b^p_\alpha $ and weighted Bloch spaces $b^\infty _\alpha $ on the unit ball of $\mathbb \{R\}^n$ for the full ranges of parameters $0<p<\infty $, $\alpha \in \mathbb \{R\}$, and determine the precise inclusion relations among them. To verify these relations we use Carleson measures and suitable radial differential operators. For harmonic Bergman spaces various characterizations of Carleson measures are known. For weighted Bloch spaces we provide a characterization when $\alpha >0$.},
author = {Doğan, Ömer Faruk, Üreyen, Adem Ersin},
journal = {Czechoslovak Mathematical Journal},
keywords = {harmonic Bergman-Besov space; weighted harmonic Bloch space; Carleson measure; Berezin transform},
language = {eng},
number = {2},
pages = {503-523},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Inclusion relations between harmonic Bergman-Besov and weighted Bloch spaces on the unit ball},
url = {http://eudml.org/doc/294210},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Doğan, Ömer Faruk
AU - Üreyen, Adem Ersin
TI - Inclusion relations between harmonic Bergman-Besov and weighted Bloch spaces on the unit ball
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 2
SP - 503
EP - 523
AB - We consider harmonic Bergman-Besov spaces $b^p_\alpha $ and weighted Bloch spaces $b^\infty _\alpha $ on the unit ball of $\mathbb {R}^n$ for the full ranges of parameters $0<p<\infty $, $\alpha \in \mathbb {R}$, and determine the precise inclusion relations among them. To verify these relations we use Carleson measures and suitable radial differential operators. For harmonic Bergman spaces various characterizations of Carleson measures are known. For weighted Bloch spaces we provide a characterization when $\alpha >0$.
LA - eng
KW - harmonic Bergman-Besov space; weighted harmonic Bloch space; Carleson measure; Berezin transform
UR - http://eudml.org/doc/294210
ER -
References
top- Axler, S., Bourdon, P., Ramey, W., 10.1007/b97238, Springer, New York (2001). (2001) Zbl0959.31001MR1805196DOI10.1007/b97238
- Choe, B. R., Koo, H., Lee, Y., 10.4064/sm189-1-6, Studia Math. 189 (2008), 65-90. (2008) Zbl1155.47030MR2443376DOI10.4064/sm189-1-6
- Choe, B. R., Lee, Y. J., Note on atomic decompositions of harmonic Bergman functions, Complex Analysis and Its Applications, OCAMI Studies 2 Imayoshi Yoichi et al. Osaka Municipal Universities Press, Osaka (2007), 11-24. (2007) Zbl1154.47019MR2405697
- Choe, B. R., Lee, Y. J., Na, K., 10.2748/tmj/1113246553, Tohoku Math. J. 56 (2004), 255-270. (2004) Zbl1077.47028MR2053321DOI10.2748/tmj/1113246553
- Choe, B. R., Lee, Y. J., Na, K., 10.1017/S0027763000008837, Nagoya Math. J. 174 (2004), 165-186. (2004) Zbl1067.47039MR2066107DOI10.1017/S0027763000008837
- Coifman, R. R., Rochberg, R., Representation theorems for holomorphic and harmonic functions in , Astérisque 77 (1980), 11-66. (1980) Zbl0472.46040MR0604369
- Djrbashian, A. E., Shamoian, F. A., Topics in the Theory of Spaces, Teubner Texts in Mathematics, 105, B. G. Teubner, Leipzig (1988). (1988) Zbl0667.30032MR1021691
- Doğan, "{O}. F., Harmonic Besov spaces with small exponents, Available at https://arxiv.org/abs/1808.01451.
- Doğan, Ö. F., Üreyen, A. E., 10.1007/s11785-017-0645-9, Complex Anal. Oper. Theory 12 (2018), 1143-1177. (2018) Zbl06909437MR3800965DOI10.1007/s11785-017-0645-9
- Doubtsov, E., 10.1016/j.jfa.2009.10.028, J. Funct. Anal. 258 (2010), 2801-2816. (2010) Zbl1191.32003MR2593344DOI10.1016/j.jfa.2009.10.028
- Gergün, S., Kaptanoğlu, H. T., Üreyen, A. E., 10.1016/j.crma.2009.04.016, C. R. Math. Acad. Sci. Paris 347 (2009), 735-738. (2009) Zbl1179.31003MR2543973DOI10.1016/j.crma.2009.04.016
- Gergün, S., Kaptanoğlu, H. T., Üreyen, A. E., 10.1142/S0129167X16500701, Int. J. Math. 27 (2016), Article ID 1650070, 59 pages. (2016) Zbl1354.31005MR3546608DOI10.1142/S0129167X16500701
- Jevtić, M., Pavlović, M., 10.1023/A:1006620929091, Acta Math. Hung. 85 (1999), 81-96. (1999) Zbl0956.32004MR1713093DOI10.1023/A:1006620929091
- Liu, C. W., Shi, J. H., 10.1007/s10114-002-0203-9, Acta Math. Sin. 19 (2003), 187-200. (2003) Zbl1031.31001MR1968481DOI10.1007/s10114-002-0203-9
- Luecking, D. H., 10.1017/S001309150001748X, Proc. Edinburgh Math. Soc. 29 (1986), 125-131. (1986) Zbl0587.30048MR0829188DOI10.1017/S001309150001748X
- Luecking, D. H., 10.1307/mmj/1029004756, Michigan Math. J. 40 (1993), 333-358. (1993) Zbl0801.46019MR1226835DOI10.1307/mmj/1029004756
- Miao, J., 10.1007/BF01489456, Monatsh. Math. 125 (1998), 25-35. (1998) Zbl0907.46020MR1485975DOI10.1007/BF01489456
- Oleinik, V. L., Pavlov, B. S., 10.1007/BF01099672, J. Soviet Math. 2 (1974), 135-142 English. Russian original translation from Zap. Nauch. Sem. LOMI Steklov 22 1971 94-102. (1974) Zbl0278.46032MR0318867DOI10.1007/BF01099672
- Ren, G., Harmonic Bergman spaces with small exponents in the unit ball, Collect. Math. 53 (2002), 83-98. (2002) Zbl1029.46019MR1893309
- Yang, W., Ouyang, C., 10.1216/rmjm/1021477265, Rocky Mt. J. Math. 30 (2000), 1151-1169. (2000) Zbl0978.32002MR1797836DOI10.1216/rmjm/1021477265
- Zhao, R., Zhu, K., 0.24033/msmf.427, Mém. Soc. Math. Fr. 115 (2008), 103 pages. (2008) Zbl1176.32001MR2537698DOI0.24033/msmf.427
- Zygmund, A., Trigonometric Series. Vol. I, II, Cambridge Mathematical Library, Cambridge University Press, Cambridge (2002). (2002) Zbl1084.42003MR1963498
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.