Nonrectifiable oscillatory solutions of second order linear differential equations
Takanao Kanemitsu; Satoshi Tanaka
Archivum Mathematicum (2017)
- Volume: 053, Issue: 4, page 193-201
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topKanemitsu, Takanao, and Tanaka, Satoshi. "Nonrectifiable oscillatory solutions of second order linear differential equations." Archivum Mathematicum 053.4 (2017): 193-201. <http://eudml.org/doc/294211>.
@article{Kanemitsu2017,
abstract = {The second order linear differential equation \begin\{equation*\} (p(x)y^\{\prime \})^\{\prime \}+q(x)y=0\,, \quad x \in (0,x\_0] \end\{equation*\}
is considered, where $p$, $q \in C^1(0,x_0]$, $p(x)>0$, $q(x)>0$ for $x \in (0,x_0]$. Sufficient conditions are established for every nontrivial solutions to be nonrectifiable oscillatory near $x=0$ without the Hartman–Wintner condition.},
author = {Kanemitsu, Takanao, Tanaka, Satoshi},
journal = {Archivum Mathematicum},
keywords = {oscillatory; nonrectifiable; second order linear differential equation},
language = {eng},
number = {4},
pages = {193-201},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Nonrectifiable oscillatory solutions of second order linear differential equations},
url = {http://eudml.org/doc/294211},
volume = {053},
year = {2017},
}
TY - JOUR
AU - Kanemitsu, Takanao
AU - Tanaka, Satoshi
TI - Nonrectifiable oscillatory solutions of second order linear differential equations
JO - Archivum Mathematicum
PY - 2017
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 053
IS - 4
SP - 193
EP - 201
AB - The second order linear differential equation \begin{equation*} (p(x)y^{\prime })^{\prime }+q(x)y=0\,, \quad x \in (0,x_0] \end{equation*}
is considered, where $p$, $q \in C^1(0,x_0]$, $p(x)>0$, $q(x)>0$ for $x \in (0,x_0]$. Sufficient conditions are established for every nontrivial solutions to be nonrectifiable oscillatory near $x=0$ without the Hartman–Wintner condition.
LA - eng
KW - oscillatory; nonrectifiable; second order linear differential equation
UR - http://eudml.org/doc/294211
ER -
References
top- Coppel, W.A., 10.1007/BFb0058618, Lecture Notes in Math., vol. 220, Springer–Verlag, Berlin–New York, 1971. (1971) Zbl0224.34003MR0460785DOI10.1007/BFb0058618
- Došlý, O., Řehák, P., Half-linear differential equations, North-Holland Math. Stud., vol. 202, Elsevier Science B.V., Amsterdam, 2005. (2005) Zbl1090.34001MR2158903
- Elias, U., Oscillation theory of two-term differential equations, Math. Appl., vol. 396, Kluwer Acad. Publ., Dordrecht, 1997. (1997) Zbl0878.34022MR1445292
- Hartman, P., Ordinary differential equations, Classics Appl. Math, vol. 38, SIAM, Philadelphia, PA, 2002. (2002) Zbl1009.34001MR1929104
- Kiguradze, I.T., Chanturia, T.A., Asymptotic properties of solutions of nonautonomous ordinary differential equations, Math. Appl., vol. 89, Kluwer Acad. Publ., Dordrecht, 1993, Translated from the 1985 Russian original. (1993) Zbl0782.34002MR1220223
- Kusano, T., Yoshida, N., Existence and qualitative behavior of oscillatory solutions of second order linear ordinary differential equations, Acta Math. Univ. Comenian. (N.S.) 86 (2017), 23–50. (2017) Zbl1374.34098MR3602515
- Kwong, M.K., Pašić, M., Wong, J.S.W., 10.1016/j.jde.2008.05.016, J. Differential Equations 245 (2008), 2333–2351. (2008) Zbl1168.34027MR2446834DOI10.1016/j.jde.2008.05.016
- Pašić, M., 10.1016/S0022-0396(02)00149-3, J. Differential Equations 190 (2003), 268–305. (2003) Zbl1054.34034MR1970964DOI10.1016/S0022-0396(02)00149-3
- Pašić, M., Rectifiability of solutions of the one-dimensional -Laplacian, Electron. J. Differential Equations 46 (2005), 8pp. (2005) Zbl1129.35402MR2135257
- Pašić, M., 10.1016/j.jmaa.2007.01.099, J. Math. Anal. Appl. 335 (2007), 724–738. (2007) Zbl1126.34023MR2340351DOI10.1016/j.jmaa.2007.01.099
- Pašić, M., Rectifiable and unrectifiable oscillations for a generalization of the Riemann-Weber version of Euler differential equation, Georgian Math. J. 15 (2008), 759–774. (2008) Zbl1172.34025MR2494972
- Pašić, M., Raguž, A., Rectifiable oscillations and singular behaviour of solutions of second-order linear differential equations, Int. J. Math. Anal. 2 (2008), 477–490. (2008) Zbl1181.34045MR2482731
- Pašić, M., Tanaka, S., 10.1016/j.jmaa.2011.03.051, J. Math. Anal. Appl. 381 (2011), 27–42. (2011) Zbl1223.34047MR2796190DOI10.1016/j.jmaa.2011.03.051
- Swanson, C.A., Comparison and oscillation theory of linear differential equations, Math. Sci. Engrg., vol. 48, Academic Press, New York-London, 1968. (1968) Zbl0191.09904MR0463570
- Wong, J.S.W., On rectifiable oscillation of Euler type second order linear differential equations, Electron. J. Qual. Theory Differ. Equ. 20 (2007), 12pp. (2007) Zbl1182.34049MR2346353
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.