A note on star Lindelöf, first countable and normal spaces
Mathematica Bohemica (2017)
- Volume: 142, Issue: 4, page 445-448
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topXuan, Wei-Feng. "A note on star Lindelöf, first countable and normal spaces." Mathematica Bohemica 142.4 (2017): 445-448. <http://eudml.org/doc/294214>.
@article{Xuan2017,
abstract = {A topological space $X$ is said to be star Lindelöf if for any open cover $\mathcal \{U\}$ of $X$ there is a Lindelöf subspace $A \subset X$ such that $\operatorname\{St\}(A, \mathcal \{U\})=X$. The “extent” $e(X)$ of $X$ is the supremum of the cardinalities of closed discrete subsets of $X$. We prove that under $V=L$ every star Lindelöf, first countable and normal space must have countable extent. We also obtain an example under $\rm MA +\lnot CH$, which shows that a star Lindelöf, first countable and normal space may not have countable extent.},
author = {Xuan, Wei-Feng},
journal = {Mathematica Bohemica},
keywords = {star Lindelöf space; first countable space; normal space; countable extent},
language = {eng},
number = {4},
pages = {445-448},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on star Lindelöf, first countable and normal spaces},
url = {http://eudml.org/doc/294214},
volume = {142},
year = {2017},
}
TY - JOUR
AU - Xuan, Wei-Feng
TI - A note on star Lindelöf, first countable and normal spaces
JO - Mathematica Bohemica
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 142
IS - 4
SP - 445
EP - 448
AB - A topological space $X$ is said to be star Lindelöf if for any open cover $\mathcal {U}$ of $X$ there is a Lindelöf subspace $A \subset X$ such that $\operatorname{St}(A, \mathcal {U})=X$. The “extent” $e(X)$ of $X$ is the supremum of the cardinalities of closed discrete subsets of $X$. We prove that under $V=L$ every star Lindelöf, first countable and normal space must have countable extent. We also obtain an example under $\rm MA +\lnot CH$, which shows that a star Lindelöf, first countable and normal space may not have countable extent.
LA - eng
KW - star Lindelöf space; first countable space; normal space; countable extent
UR - http://eudml.org/doc/294214
ER -
References
top- Bing, R. H., 10.4153/CJM-1951-022-3, Can. J. Math. 3 (1951), 175-186. (1951) Zbl0042.41301MR0043449DOI10.4153/CJM-1951-022-3
- Engelking, R., General Topology, Sigma Series in Pure Mathematics 6. Heldermann, Berlin (1989). (1989) Zbl0684.54001MR1039321
- Fleissner, W. G., 10.2307/2039914, Proc. Am. Math. Soc. 46 (1974), 294-298. (1974) Zbl0314.54028MR0362240DOI10.2307/2039914
- Ginsburg, J., Woods, R. G., 10.2307/2041457, Proc. Am. Math. Soc. 64 (1977), 357-360. (1977) Zbl0398.54002MR0461407DOI10.2307/2041457
- Hodel, R., Cardinal functions I, Handbook of Set-Theoretic Topology K. Kunen et al. North-Holland, Amsterdam (1984), 1-61. (1984) Zbl0559.54003MR0776620
- Miller, A. W., Special subsets of the real line, Handbook of Set-Theoretic Topology K. Kunen et al. North-Holland, Amsterdam (1984), 201-233. (1984) Zbl0588.54035MR0776624
- Tall, F. D., Normality versus collectionwise normality, Handbook of Set-Theoretic Topology K. Kunen et al. North-Holland, Amsterdam (1984), 685-732. (1984) Zbl0552.54011MR0776634
- Douwen, E. K. van, Reed, G. M., Roscoe, A. W., Tree, I. J., 10.1016/0166-8641(91)90077-Y, Topology Appl. 39 (1991), 71-103. (1991) Zbl0743.54007MR1103993DOI10.1016/0166-8641(91)90077-Y
- Xuan, W. F., Shi, W. X., 10.1016/j.topol.2016.02.009, Topology Appl. 204 (2016), 63-69. (2016) Zbl1342.54015MR3482703DOI10.1016/j.topol.2016.02.009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.