Oscillations of nonlinear difference equations with deviating arguments
George E. Chatzarakis; Julio G. Dix
Mathematica Bohemica (2018)
- Volume: 143, Issue: 1, page 67-87
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topChatzarakis, George E., and Dix, Julio G.. "Oscillations of nonlinear difference equations with deviating arguments." Mathematica Bohemica 143.1 (2018): 67-87. <http://eudml.org/doc/294224>.
@article{Chatzarakis2018,
abstract = {This paper is concerned with the oscillatory behavior of first-order nonlinear difference equations with variable deviating arguments. The corresponding difference equations of both retarded and advanced type are studied. Examples illustrating the results are also given.},
author = {Chatzarakis, George E., Dix, Julio G.},
journal = {Mathematica Bohemica},
keywords = {infinite sum condition; retarded argument; advanced argument; oscillatory solution; nonoscillatory solution},
language = {eng},
number = {1},
pages = {67-87},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Oscillations of nonlinear difference equations with deviating arguments},
url = {http://eudml.org/doc/294224},
volume = {143},
year = {2018},
}
TY - JOUR
AU - Chatzarakis, George E.
AU - Dix, Julio G.
TI - Oscillations of nonlinear difference equations with deviating arguments
JO - Mathematica Bohemica
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 143
IS - 1
SP - 67
EP - 87
AB - This paper is concerned with the oscillatory behavior of first-order nonlinear difference equations with variable deviating arguments. The corresponding difference equations of both retarded and advanced type are studied. Examples illustrating the results are also given.
LA - eng
KW - infinite sum condition; retarded argument; advanced argument; oscillatory solution; nonoscillatory solution
UR - http://eudml.org/doc/294224
ER -
References
top- Berezansky, L., Braverman, E., On existence of positive solutions for linear difference equations with several delays, Adv. Dyn. Syst. Appl. 1 (2006), 29-47. (2006) Zbl1124.39002MR2287633
- Chatzarakis, G. E., Koplatadze, R., Stavroulakis, I. P., 10.2140/pjm.2008.235.15, Pac. J. Math. 235 (2008), 15-33. (2008) Zbl1153.39010MR2379767DOI10.2140/pjm.2008.235.15
- Chatzarakis, G. E., Pinelas, S., Stavroulakis, I. P., 10.1007/s00010-013-0238-2, Aequationes Math. 88 (2014), 105-123. (2014) Zbl1306.39007MR3250787DOI10.1007/s00010-013-0238-2
- Chatzarakis, G. E., Stavroulakis, I. P., Oscillations of first order linear delay difference equations, Aust. J. Math. Anal. Appl. (electronic only) 3 (2006), Article ID 14, 11 pages. (2006) Zbl1096.39003MR2223018
- Dix, J. P., Dix, J. G., 10.2140/involve.2016.9.465, Involve 9 (2016), 465-482. (2016) Zbl06590119MR3509339DOI10.2140/involve.2016.9.465
- Erbe, L. H., Kong, Q., Zhang, B. G., Oscillation Theory for Functional-Differential Equations, Pure and Applied Mathematics 190. Marcel Dekker, New York (1994). (1994) Zbl0821.34067MR1309905
- Erbe, L. H., Zhang, B. G., Oscillation of discrete analogues of delay equations, Differ. Integral Equ. 2 (1989), 300-309. (1989) Zbl0723.39004MR0983682
- Ladas, G., 10.1016/0022-247X(90)90278-N, J. Math. Anal. Appl. 153 (1990), 276-287. (1990) Zbl0718.39002MR1080131DOI10.1016/0022-247X(90)90278-N
- Ladas, G., Philos, C. G., Sficas, Y. G., 10.1155/S1048953389000080, J. Appl. Math. Simulation 2 (1989), 101-111. (1989) Zbl0685.39004MR1010549DOI10.1155/S1048953389000080
- Ladde, G. S., Lakshmikantham, V., Zhang, B. G., Oscillation Theory of Differential Equations with Deviating Arguments, Pure and Applied Mathematics 110. Marcel Dekker, New York (1987). (1987) Zbl0622.34071MR1017244
- Li, B., 10.1090/S0002-9939-96-03674-X, Proc. Am. Math. Soc. 124 (1996), 3729-3737. (1996) Zbl0865.34057MR1363175DOI10.1090/S0002-9939-96-03674-X
- Li, X., Zhu, D., Oscillation of advanced difference equations with variable coefficients, Ann. Differ. Equations 18 (2002), 254-263. (2002) Zbl1010.39001MR1940383
- Luo, X. N., Zhou, Y., Li, C. F., Oscillation of a nonlinear difference equation with several delays, Math. Bohem. 128 (2003), 309-317. (2003) Zbl1055.39015MR2012607
- Tang, X. H., Yu, J. S., 10.1016/S0898-1221(99)00083-8, Comput. Math. Appl. 37 (1999), 11-20. (1999) Zbl0937.39012MR1688201DOI10.1016/S0898-1221(99)00083-8
- Tang, X. H., Zhang, R. Y., 10.1016/S0898-1221(01)00243-7, Comput. Math. Appl. 42 (2001), 1319-1330. (2001) Zbl1002.39022MR1861531DOI10.1016/S0898-1221(01)00243-7
- Wang, X., 10.1016/S0022-247X(03)00508-0, J. Math. Anal. Appl. 286 (2003), 664-674. (2003) Zbl1033.39017MR2008855DOI10.1016/S0022-247X(03)00508-0
- Yan, W., Meng, Q., Yan, J., Oscillation criteria for difference equation of variable delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13A (2006), Part 2, suppl., 641-647. (2006) MR2219618
- Zhang, B. G., Zhou, Y., 10.1016/S0898-1221(02)00193-1, Comput. Math. Appl. 44 (2002), 817-821. (2002) Zbl1035.39010MR1925823DOI10.1016/S0898-1221(02)00193-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.