Oscillations of nonlinear difference equations with deviating arguments

George E. Chatzarakis; Julio G. Dix

Mathematica Bohemica (2018)

  • Volume: 143, Issue: 1, page 67-87
  • ISSN: 0862-7959

Abstract

top
This paper is concerned with the oscillatory behavior of first-order nonlinear difference equations with variable deviating arguments. The corresponding difference equations of both retarded and advanced type are studied. Examples illustrating the results are also given.

How to cite

top

Chatzarakis, George E., and Dix, Julio G.. "Oscillations of nonlinear difference equations with deviating arguments." Mathematica Bohemica 143.1 (2018): 67-87. <http://eudml.org/doc/294224>.

@article{Chatzarakis2018,
abstract = {This paper is concerned with the oscillatory behavior of first-order nonlinear difference equations with variable deviating arguments. The corresponding difference equations of both retarded and advanced type are studied. Examples illustrating the results are also given.},
author = {Chatzarakis, George E., Dix, Julio G.},
journal = {Mathematica Bohemica},
keywords = {infinite sum condition; retarded argument; advanced argument; oscillatory solution; nonoscillatory solution},
language = {eng},
number = {1},
pages = {67-87},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Oscillations of nonlinear difference equations with deviating arguments},
url = {http://eudml.org/doc/294224},
volume = {143},
year = {2018},
}

TY - JOUR
AU - Chatzarakis, George E.
AU - Dix, Julio G.
TI - Oscillations of nonlinear difference equations with deviating arguments
JO - Mathematica Bohemica
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 143
IS - 1
SP - 67
EP - 87
AB - This paper is concerned with the oscillatory behavior of first-order nonlinear difference equations with variable deviating arguments. The corresponding difference equations of both retarded and advanced type are studied. Examples illustrating the results are also given.
LA - eng
KW - infinite sum condition; retarded argument; advanced argument; oscillatory solution; nonoscillatory solution
UR - http://eudml.org/doc/294224
ER -

References

top
  1. Berezansky, L., Braverman, E., On existence of positive solutions for linear difference equations with several delays, Adv. Dyn. Syst. Appl. 1 (2006), 29-47. (2006) Zbl1124.39002MR2287633
  2. Chatzarakis, G. E., Koplatadze, R., Stavroulakis, I. P., 10.2140/pjm.2008.235.15, Pac. J. Math. 235 (2008), 15-33. (2008) Zbl1153.39010MR2379767DOI10.2140/pjm.2008.235.15
  3. Chatzarakis, G. E., Pinelas, S., Stavroulakis, I. P., 10.1007/s00010-013-0238-2, Aequationes Math. 88 (2014), 105-123. (2014) Zbl1306.39007MR3250787DOI10.1007/s00010-013-0238-2
  4. Chatzarakis, G. E., Stavroulakis, I. P., Oscillations of first order linear delay difference equations, Aust. J. Math. Anal. Appl. (electronic only) 3 (2006), Article ID 14, 11 pages. (2006) Zbl1096.39003MR2223018
  5. Dix, J. P., Dix, J. G., 10.2140/involve.2016.9.465, Involve 9 (2016), 465-482. (2016) Zbl06590119MR3509339DOI10.2140/involve.2016.9.465
  6. Erbe, L. H., Kong, Q., Zhang, B. G., Oscillation Theory for Functional-Differential Equations, Pure and Applied Mathematics 190. Marcel Dekker, New York (1994). (1994) Zbl0821.34067MR1309905
  7. Erbe, L. H., Zhang, B. G., Oscillation of discrete analogues of delay equations, Differ. Integral Equ. 2 (1989), 300-309. (1989) Zbl0723.39004MR0983682
  8. Ladas, G., 10.1016/0022-247X(90)90278-N, J. Math. Anal. Appl. 153 (1990), 276-287. (1990) Zbl0718.39002MR1080131DOI10.1016/0022-247X(90)90278-N
  9. Ladas, G., Philos, C. G., Sficas, Y. G., 10.1155/S1048953389000080, J. Appl. Math. Simulation 2 (1989), 101-111. (1989) Zbl0685.39004MR1010549DOI10.1155/S1048953389000080
  10. Ladde, G. S., Lakshmikantham, V., Zhang, B. G., Oscillation Theory of Differential Equations with Deviating Arguments, Pure and Applied Mathematics 110. Marcel Dekker, New York (1987). (1987) Zbl0622.34071MR1017244
  11. Li, B., 10.1090/S0002-9939-96-03674-X, Proc. Am. Math. Soc. 124 (1996), 3729-3737. (1996) Zbl0865.34057MR1363175DOI10.1090/S0002-9939-96-03674-X
  12. Li, X., Zhu, D., Oscillation of advanced difference equations with variable coefficients, Ann. Differ. Equations 18 (2002), 254-263. (2002) Zbl1010.39001MR1940383
  13. Luo, X. N., Zhou, Y., Li, C. F., Oscillation of a nonlinear difference equation with several delays, Math. Bohem. 128 (2003), 309-317. (2003) Zbl1055.39015MR2012607
  14. Tang, X. H., Yu, J. S., 10.1016/S0898-1221(99)00083-8, Comput. Math. Appl. 37 (1999), 11-20. (1999) Zbl0937.39012MR1688201DOI10.1016/S0898-1221(99)00083-8
  15. Tang, X. H., Zhang, R. Y., 10.1016/S0898-1221(01)00243-7, Comput. Math. Appl. 42 (2001), 1319-1330. (2001) Zbl1002.39022MR1861531DOI10.1016/S0898-1221(01)00243-7
  16. Wang, X., 10.1016/S0022-247X(03)00508-0, J. Math. Anal. Appl. 286 (2003), 664-674. (2003) Zbl1033.39017MR2008855DOI10.1016/S0022-247X(03)00508-0
  17. Yan, W., Meng, Q., Yan, J., Oscillation criteria for difference equation of variable delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13A (2006), Part 2, suppl., 641-647. (2006) MR2219618
  18. Zhang, B. G., Zhou, Y., 10.1016/S0898-1221(02)00193-1, Comput. Math. Appl. 44 (2002), 817-821. (2002) Zbl1035.39010MR1925823DOI10.1016/S0898-1221(02)00193-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.