Extensions of fuzzy connectives on ACDL
Kybernetika (2019)
- Volume: 55, Issue: 3, page 472-494
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topLiu, Hui, and Zhao, Bin. "Extensions of fuzzy connectives on ACDL." Kybernetika 55.3 (2019): 472-494. <http://eudml.org/doc/294232>.
@article{Liu2019,
abstract = {The main goal of this paper is to construct fuzzy connectives on algebraic completely distributive lattice(ACDL) by means of extending fuzzy connectives on the set of completely join-prime elements or on the set of completely meet-prime elements, and discuss some properties of the new fuzzy connectives. Firstly, we present the methods to construct t-norms, t-conorms, fuzzy negations valued on ACDL and discuss whether De Morgan triple will be kept. Then we put forward two ways to extend fuzzy implications and also make a study on the behaviors of $R$-implication and reciprocal implication. Finally, we construct two classes of infinitely $\bigvee $-distributive uninorms and infinitely $\bigwedge $-distributive uninorms.},
author = {Liu, Hui, Zhao, Bin},
journal = {Kybernetika},
keywords = {extensions; algebraic completely distributive lattices; fuzzy connectives},
language = {eng},
number = {3},
pages = {472-494},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Extensions of fuzzy connectives on ACDL},
url = {http://eudml.org/doc/294232},
volume = {55},
year = {2019},
}
TY - JOUR
AU - Liu, Hui
AU - Zhao, Bin
TI - Extensions of fuzzy connectives on ACDL
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 3
SP - 472
EP - 494
AB - The main goal of this paper is to construct fuzzy connectives on algebraic completely distributive lattice(ACDL) by means of extending fuzzy connectives on the set of completely join-prime elements or on the set of completely meet-prime elements, and discuss some properties of the new fuzzy connectives. Firstly, we present the methods to construct t-norms, t-conorms, fuzzy negations valued on ACDL and discuss whether De Morgan triple will be kept. Then we put forward two ways to extend fuzzy implications and also make a study on the behaviors of $R$-implication and reciprocal implication. Finally, we construct two classes of infinitely $\bigvee $-distributive uninorms and infinitely $\bigwedge $-distributive uninorms.
LA - eng
KW - extensions; algebraic completely distributive lattices; fuzzy connectives
UR - http://eudml.org/doc/294232
ER -
References
top- Baczyński, M., Jayaram, B., Fuzzy Implications., Studies in Fuzziness and Soft Computing, Springer-Verlag, Berlin Heidelberg 2008. Zbl1293.03012MR2428086
- Çaylı, G. D., 10.1016/j.fss.2017.07.015, Fuzzy Sets Syst. 332 (2018), 129-143. MR3732255DOI10.1016/j.fss.2017.07.015
- Çaylı, G. D., Drygaś, P., 10.1016/j.ins.2017.09.018, Inform. Sci. 422 (2018), 352-363. MR3709474DOI10.1016/j.ins.2017.09.018
- Çaylı, G. D., Karaçal, F., 10.14736/kyb-2017-3-0394, Kybernetika 53 (2017), 394-417. MR3684677DOI10.14736/kyb-2017-3-0394
- Çaylı, G. D., Karaçal, F., Mesiar, R., 10.1016/j.ins.2016.05.036, Inform. Sci. 367-368 (2016), 221-231. MR3684677DOI10.1016/j.ins.2016.05.036
- Davey, B. A., Priestley, H. A., Introduction to lattices and Order., Cambridge University Press, Cambridge 1990. MR1058437
- Baets, B. De, Mesiar, R., 10.1016/s0165-0114(98)00259-0, Fuzzy Sets Syst. 104 (1999), 61-75. Zbl0935.03060MR1685810DOI10.1016/s0165-0114(98)00259-0
- Deschrijver, G., 10.1016/j.ins.2013.04.033, Inform. Sci. 244 (2013), 48-59. MR3068360DOI10.1016/j.ins.2013.04.033
- Jenei, S., Baets, B. De, 10.1016/s0165-0114(03)00125-8, Fuzzy Sets Syst. 139 (2003), 699-707. MR2015162DOI10.1016/s0165-0114(03)00125-8
- Karaçal, F., Ertuğrul, Ü., Mesiar, R., 10.1016/j.fss.2016.05.014, Fuzzy Sets Syst. 308 (2017), 54-71. MR3579154DOI10.1016/j.fss.2016.05.014
- Karaçal, F., Mesiar, R., 10.1016/j.fss.2014.05.001, Fuzzy Sets Syst. 261 (2015), 33-43. MR3291484DOI10.1016/j.fss.2014.05.001
- Karaçal, F., Sağiroğlu, Y., 10.1016/j.fss.2008.03.022, Fuzzy Sets Syst. 160 (2009), 32-43. MR2469428DOI10.1016/j.fss.2008.03.022
- Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Kluwer Academic Publishers, Dordrecht 2000. Zbl1087.20041MR1790096
- Palmeira, E. S., Bedregal, B. C., 10.1016/j.camwa.2011.12.007, Comput. Math. Appl. 63 (2012), 1026-1038. MR2892746DOI10.1016/j.camwa.2011.12.007
- Palmeira, E. S., Bedregal, B. C., 10.1016/j.fss.2013.07.023, Fuzzy Sets Syst. 240 (2014), 66-85. MR3167513DOI10.1016/j.fss.2013.07.023
- Palmeira, E. S., Bedregal, B. C., Mesiar, R., Fernandez, J., 10.1016/j.fss.2013.05.008, Fuzzy Sets Syst. 240 (2014), 1-21. MR3167509DOI10.1016/j.fss.2013.05.008
- Saminger-Platz, S., 10.1016/j.fss.2005.12.021, Fuzzy Sets Syst. 157 (2006), 1403-1416. MR2226983DOI10.1016/j.fss.2005.12.021
- Saminger-Platz, S., Klement, E. P., Mesiar, R., 10.1016/s0019-3577(08)80019-5, Indag. Math. 19 (2008), 1, 135-150. MR2466398DOI10.1016/s0019-3577(08)80019-5
- Wang, Z. D., Fang, J. X, 10.1016/j.fss.2007.06.011, Fuzzy Sets Syst. 158 (2007), 2494-2503. MR2361663DOI10.1016/j.fss.2007.06.011
- Wang, Z. D., Yu, Y. D, 10.1016/s0165-0114(01)00210-x, Fuzzy Sets Syst. 132 (2002), 113-124. MR1936220DOI10.1016/s0165-0114(01)00210-x
- Yılmaz, Ş., Kazancı, O., 10.1016/j.ins.2017.02.041, Inform. Sci. 397-398 (2017), 110-117. DOI10.1016/j.ins.2017.02.041
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.