Extensions of fuzzy connectives on ACDL

Hui Liu; Bin Zhao

Kybernetika (2019)

  • Volume: 55, Issue: 3, page 472-494
  • ISSN: 0023-5954

Abstract

top
The main goal of this paper is to construct fuzzy connectives on algebraic completely distributive lattice(ACDL) by means of extending fuzzy connectives on the set of completely join-prime elements or on the set of completely meet-prime elements, and discuss some properties of the new fuzzy connectives. Firstly, we present the methods to construct t-norms, t-conorms, fuzzy negations valued on ACDL and discuss whether De Morgan triple will be kept. Then we put forward two ways to extend fuzzy implications and also make a study on the behaviors of R -implication and reciprocal implication. Finally, we construct two classes of infinitely -distributive uninorms and infinitely -distributive uninorms.

How to cite

top

Liu, Hui, and Zhao, Bin. "Extensions of fuzzy connectives on ACDL." Kybernetika 55.3 (2019): 472-494. <http://eudml.org/doc/294232>.

@article{Liu2019,
abstract = {The main goal of this paper is to construct fuzzy connectives on algebraic completely distributive lattice(ACDL) by means of extending fuzzy connectives on the set of completely join-prime elements or on the set of completely meet-prime elements, and discuss some properties of the new fuzzy connectives. Firstly, we present the methods to construct t-norms, t-conorms, fuzzy negations valued on ACDL and discuss whether De Morgan triple will be kept. Then we put forward two ways to extend fuzzy implications and also make a study on the behaviors of $R$-implication and reciprocal implication. Finally, we construct two classes of infinitely $\bigvee $-distributive uninorms and infinitely $\bigwedge $-distributive uninorms.},
author = {Liu, Hui, Zhao, Bin},
journal = {Kybernetika},
keywords = {extensions; algebraic completely distributive lattices; fuzzy connectives},
language = {eng},
number = {3},
pages = {472-494},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Extensions of fuzzy connectives on ACDL},
url = {http://eudml.org/doc/294232},
volume = {55},
year = {2019},
}

TY - JOUR
AU - Liu, Hui
AU - Zhao, Bin
TI - Extensions of fuzzy connectives on ACDL
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 3
SP - 472
EP - 494
AB - The main goal of this paper is to construct fuzzy connectives on algebraic completely distributive lattice(ACDL) by means of extending fuzzy connectives on the set of completely join-prime elements or on the set of completely meet-prime elements, and discuss some properties of the new fuzzy connectives. Firstly, we present the methods to construct t-norms, t-conorms, fuzzy negations valued on ACDL and discuss whether De Morgan triple will be kept. Then we put forward two ways to extend fuzzy implications and also make a study on the behaviors of $R$-implication and reciprocal implication. Finally, we construct two classes of infinitely $\bigvee $-distributive uninorms and infinitely $\bigwedge $-distributive uninorms.
LA - eng
KW - extensions; algebraic completely distributive lattices; fuzzy connectives
UR - http://eudml.org/doc/294232
ER -

References

top
  1. Baczyński, M., Jayaram, B., Fuzzy Implications., Studies in Fuzziness and Soft Computing, Springer-Verlag, Berlin Heidelberg 2008. Zbl1293.03012MR2428086
  2. Çaylı, G. D., 10.1016/j.fss.2017.07.015, Fuzzy Sets Syst. 332 (2018), 129-143. MR3732255DOI10.1016/j.fss.2017.07.015
  3. Çaylı, G. D., Drygaś, P., 10.1016/j.ins.2017.09.018, Inform. Sci. 422 (2018), 352-363. MR3709474DOI10.1016/j.ins.2017.09.018
  4. Çaylı, G. D., Karaçal, F., 10.14736/kyb-2017-3-0394, Kybernetika 53 (2017), 394-417. MR3684677DOI10.14736/kyb-2017-3-0394
  5. Çaylı, G. D., Karaçal, F., Mesiar, R., 10.1016/j.ins.2016.05.036, Inform. Sci. 367-368 (2016), 221-231. MR3684677DOI10.1016/j.ins.2016.05.036
  6. Davey, B. A., Priestley, H. A., Introduction to lattices and Order., Cambridge University Press, Cambridge 1990. MR1058437
  7. Baets, B. De, Mesiar, R., 10.1016/s0165-0114(98)00259-0, Fuzzy Sets Syst. 104 (1999), 61-75. Zbl0935.03060MR1685810DOI10.1016/s0165-0114(98)00259-0
  8. Deschrijver, G., 10.1016/j.ins.2013.04.033, Inform. Sci. 244 (2013), 48-59. MR3068360DOI10.1016/j.ins.2013.04.033
  9. Jenei, S., Baets, B. De, 10.1016/s0165-0114(03)00125-8, Fuzzy Sets Syst. 139 (2003), 699-707. MR2015162DOI10.1016/s0165-0114(03)00125-8
  10. Karaçal, F., Ertuğrul, Ü., Mesiar, R., 10.1016/j.fss.2016.05.014, Fuzzy Sets Syst. 308 (2017), 54-71. MR3579154DOI10.1016/j.fss.2016.05.014
  11. Karaçal, F., Mesiar, R., 10.1016/j.fss.2014.05.001, Fuzzy Sets Syst. 261 (2015), 33-43. MR3291484DOI10.1016/j.fss.2014.05.001
  12. Karaçal, F., Sağiroğlu, Y., 10.1016/j.fss.2008.03.022, Fuzzy Sets Syst. 160 (2009), 32-43. MR2469428DOI10.1016/j.fss.2008.03.022
  13. Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Kluwer Academic Publishers, Dordrecht 2000. Zbl1087.20041MR1790096
  14. Palmeira, E. S., Bedregal, B. C., 10.1016/j.camwa.2011.12.007, Comput. Math. Appl. 63 (2012), 1026-1038. MR2892746DOI10.1016/j.camwa.2011.12.007
  15. Palmeira, E. S., Bedregal, B. C., 10.1016/j.fss.2013.07.023, Fuzzy Sets Syst. 240 (2014), 66-85. MR3167513DOI10.1016/j.fss.2013.07.023
  16. Palmeira, E. S., Bedregal, B. C., Mesiar, R., Fernandez, J., 10.1016/j.fss.2013.05.008, Fuzzy Sets Syst. 240 (2014), 1-21. MR3167509DOI10.1016/j.fss.2013.05.008
  17. Saminger-Platz, S., 10.1016/j.fss.2005.12.021, Fuzzy Sets Syst. 157 (2006), 1403-1416. MR2226983DOI10.1016/j.fss.2005.12.021
  18. Saminger-Platz, S., Klement, E. P., Mesiar, R., 10.1016/s0019-3577(08)80019-5, Indag. Math. 19 (2008), 1, 135-150. MR2466398DOI10.1016/s0019-3577(08)80019-5
  19. Wang, Z. D., Fang, J. X, 10.1016/j.fss.2007.06.011, Fuzzy Sets Syst. 158 (2007), 2494-2503. MR2361663DOI10.1016/j.fss.2007.06.011
  20. Wang, Z. D., Yu, Y. D, 10.1016/s0165-0114(01)00210-x, Fuzzy Sets Syst. 132 (2002), 113-124. MR1936220DOI10.1016/s0165-0114(01)00210-x
  21. Yılmaz, Ş., Kazancı, O., 10.1016/j.ins.2017.02.041, Inform. Sci. 397-398 (2017), 110-117. DOI10.1016/j.ins.2017.02.041

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.