Multi-Morrey spaces for non-doubling measures

Suixin He

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 4, page 1039-1052
  • ISSN: 0011-4642

Abstract

top
The spaces of multi-Morrey type for positive Radon measures satisfying a growth condition on $\mathbb {R}^{d}$ are introduced. After defining the spaces, we investigate the multilinear maximal function, the multilinear fractional integral operator and the multilinear Calderón-Zygmund operators, respectively, from multi-Morrey spaces to Morrey spaces.

How to cite

top

He, Suixin. "Multi-Morrey spaces for non-doubling measures." Czechoslovak Mathematical Journal 69.4 (2019): 1039-1052. <http://eudml.org/doc/294234>.

@article{He2019,
abstract = {The spaces of multi-Morrey type for positive Radon measures satisfying a growth condition on $\mathbb \{R\}^\{d\}$ are introduced. After defining the spaces, we investigate the multilinear maximal function, the multilinear fractional integral operator and the multilinear Calderón-Zygmund operators, respectively, from multi-Morrey spaces to Morrey spaces.},
author = {He, Suixin},
journal = {Czechoslovak Mathematical Journal},
language = {eng},
number = {4},
pages = {1039-1052},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Multi-Morrey spaces for non-doubling measures},
url = {http://eudml.org/doc/294234},
volume = {69},
year = {2019},
}

TY - JOUR
AU - He, Suixin
TI - Multi-Morrey spaces for non-doubling measures
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 1039
EP - 1052
AB - The spaces of multi-Morrey type for positive Radon measures satisfying a growth condition on $\mathbb {R}^{d}$ are introduced. After defining the spaces, we investigate the multilinear maximal function, the multilinear fractional integral operator and the multilinear Calderón-Zygmund operators, respectively, from multi-Morrey spaces to Morrey spaces.
LA - eng
UR - http://eudml.org/doc/294234
ER -

References

top
  1. Adams, D. R., 10.1215/S0012-7094-75-04265-9, Duke Math. J. 42 (1975), 765-778. (1975) Zbl0336.46038MR0458158DOI10.1215/S0012-7094-75-04265-9
  2. García-Cuerva, J., Gatto, A. E., 10.4064/sm162-3-5, Stud. Math. 162 (2004), 245-261. (2004) Zbl1045.42006MR2047654DOI10.4064/sm162-3-5
  3. García-Cuerva, J., Martell, J. M., 10.1512/iumj.2001.50.2100, Indiana Univ. Math. J. 50 (2001), 1241-1280. (2001) Zbl1023.42012MR1871355DOI10.1512/iumj.2001.50.2100
  4. Iida, T., Sato, E., Sawano, Y., Tanaka, H., 10.1007/s11117-011-0129-5, Positivity 16 (2012), 339-358. (2012) Zbl1256.42037MR2929094DOI10.1007/s11117-011-0129-5
  5. Lerner, A. K., Ombrosi, S., Pérez, C., Torres, R. H., Trujillo-González, R., 10.1016/j.aim.2008.10.014, Adv. Math. 220 (2009), 1222-1264. (2009) Zbl1160.42009MR2483720DOI10.1016/j.aim.2008.10.014
  6. Lin, H.-B., Yang, D.-C., 10.1007/s10255-012-0194-y, Acta Math. Appl. Sin., Engl. Ser. 30 (2014), 755-764. (2014) Zbl1304.42037MR3285972DOI10.1007/s10255-012-0194-y
  7. C. B. Morrey, Jr., 10.1090/S0002-9947-1938-1501936-8, Trans. Am. Math. Soc. 43 (1938), 126-166. (1938) Zbl0018.40501MR1501936DOI10.1090/S0002-9947-1938-1501936-8
  8. Nazarov, F., Treil, S., Volberg, A., 10.1155/S1073792897000469, Int. Math. Res. Not. 1997 (1997), 703-726. (1997) Zbl0889.42013MR1470373DOI10.1155/S1073792897000469
  9. Nazarov, F., Treil, S., Volberg, A., 10.1155/S1073792898000312, Int. Math. Res. Not. 1998 (1998), 463-487. (1998) Zbl0918.42009MR1626935DOI10.1155/S1073792898000312
  10. Nazarov, F., Treil, S., Volberg, A., 10.1007/BF02392690, Acta Math. 190 (2003), 151-239. (2003) Zbl1065.42014MR1998349DOI10.1007/BF02392690
  11. Sawano, Y., 10.1007/s00030-008-6032-5, NoDEA, Nonlinear Differ. Equ. Appl. 15 (2008), 413-425. (2008) Zbl1173.42317MR2465971DOI10.1007/s00030-008-6032-5
  12. Sawano, Y., Tanaka, H., 10.1007/s10114-005-0660-z, Acta Math. Sin., Engl. Ser. 21 (2005), 1535-1544. (2005) Zbl1129.42403MR2190025DOI10.1007/s10114-005-0660-z
  13. Tolsa, X., 10.1007/PL00004432, Math. Ann. 319 (2001), 89-149. (2001) Zbl0974.42014MR1812821DOI10.1007/PL00004432
  14. Tolsa, X., 10.1007/BF02393237, Acta Math. 190 (2003), 105-149. (2003) Zbl1060.30031MR1982794DOI10.1007/BF02393237
  15. Tolsa, X., 10.1090/S0002-9947-02-03131-8, Trans. Am. Math. Soc. 355 (2003), 315-348. (2003) Zbl1021.42010MR1928090DOI10.1090/S0002-9947-02-03131-8
  16. Tolsa, X., 10.1353/ajm.2004.0021, Am. J. Math. 126 (2004), 523-567. (2004) Zbl1060.30032MR2058383DOI10.1353/ajm.2004.0021
  17. Zhou, J., Wang, D., 10.1155/2014/174010, Abstr. Appl. Anal. (2014), Article ID 174010, 8 pages. (2014) Zbl07021865MR3198155DOI10.1155/2014/174010

NotesEmbed ?

top

You must be logged in to post comments.