Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 1, page 219-225
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhang, Zujin. "Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component." Czechoslovak Mathematical Journal 68.1 (2018): 219-225. <http://eudml.org/doc/294242>.
@article{Zhang2018,
abstract = {We consider the Cauchy problem for the three-dimensional Navier-Stokes equations, and provide an optimal regularity criterion in terms of $u_3$ and $\omega _3$, which are the third components of the velocity and vorticity, respectively. This gives an affirmative answer to an open problem in the paper by P. Penel, M. Pokorný (2004).},
author = {Zhang, Zujin},
journal = {Czechoslovak Mathematical Journal},
keywords = {regularity criterion; Navier-Stokes equation},
language = {eng},
number = {1},
pages = {219-225},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component},
url = {http://eudml.org/doc/294242},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Zhang, Zujin
TI - Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 1
SP - 219
EP - 225
AB - We consider the Cauchy problem for the three-dimensional Navier-Stokes equations, and provide an optimal regularity criterion in terms of $u_3$ and $\omega _3$, which are the third components of the velocity and vorticity, respectively. This gives an affirmative answer to an open problem in the paper by P. Penel, M. Pokorný (2004).
LA - eng
KW - regularity criterion; Navier-Stokes equation
UR - http://eudml.org/doc/294242
ER -
References
top- Veiga, H. Beirão da, A new regularity class for the Navier-Stokes equations in , Chin. Ann. Math. Ser. B 16 (1995), 407-412. (1995) Zbl0837.35111MR1380578
- Cao, C., Titi, E. S., 10.1512/iumj.2008.57.3719, Indiana Univ. Math. J. 57 (2008), 2643-2661. (2008) Zbl1159.35053MR2482994DOI10.1512/iumj.2008.57.3719
- Cao, C., Titi, E. S., 10.1007/s00205-011-0439-6, Arch. Ration. Mech. Anal. 202 (2011), 919-932. (2011) Zbl1256.35051MR2854673DOI10.1007/s00205-011-0439-6
- Escauriaza, L., Serëgin, G. A., Shverak, V., 10.1070/RM2003v058n02ABEH000609, Russ. Math. Surv. 58 (2003), 211-250. English. Russian original translation from Usp. Mat. Nauk 58 2003 3-44. (2003) Zbl1064.35134MR1992563DOI10.1070/RM2003v058n02ABEH000609
- Hopf, E., 10.1002/mana.3210040121, Math. Nachr. 4 (1951), 213-231 German. (1951) MR0050423DOI10.1002/mana.3210040121
- Kukavica, I., Ziane, M., 10.1088/0951-7715/19/2/012, Nonlinearity 19 (2006), 453-469. (2006) Zbl1149.35069MR2199398DOI10.1088/0951-7715/19/2/012
- Kukavica, I., Ziane, M., 10.1063/1.2395919, J. Math. Phys. 48 (2007), 065203, 10 pages. (2007) Zbl1144.81373MR2337002DOI10.1063/1.2395919
- Leray, J., 10.1007/BF02547354, Acta Math. 63 (1934), 193-248 French 9999JFM99999 60.0726.05. (1934) MR1555394DOI10.1007/BF02547354
- Ohyama, T., 10.3792/pja/1195524029, Proc. Japan Acad. 36 (1960), 273-277. (1960) Zbl0100.22404MR0139856DOI10.3792/pja/1195524029
- Penel, P., Pokorný, M., 10.1023/B:APOM.0000048124.64244.7e, Appl. Math., Praha 49 (2004), 483-493. (2004) Zbl1099.35101MR2086090DOI10.1023/B:APOM.0000048124.64244.7e
- Penel, P., Pokorný, M., 10.1007/s00021-010-0038-6, J. Math. Fluid Mech. 13 (2011), 341-353. (2011) Zbl1270.35354MR2824487DOI10.1007/s00021-010-0038-6
- Prodi, G., 10.1007/BF02410664, Ann. Mat. Pura Appl., IV. Ser. 48 (1959), 173-182 Italian. (1959) MR0126088DOI10.1007/BF02410664
- Serrin, J., The initial value problem for the Navier-Stokes equations, Nonlinear Problems Proc. Symp., Madison, 1962, University of Wisconsin Press, Madison, Wisconsin (1963), 69-98. (1963) Zbl0115.08502MR0150444
- Skalák, Z., 10.1063/1.4904836, J. Math. Phys. 55 (2014), 121506, 6 pages. (2014) Zbl1308.35177MR3390527DOI10.1063/1.4904836
- Stein, E. M., 10.1515/9781400883882, Princeton Mathematical Series 30, Princeton University Press, Princeton (1970). (1970) Zbl0207.13501MR0290095DOI10.1515/9781400883882
- Temam, R., 10.1090/chel/343, American Mathematical Society, Chelsea Publishing, Providence (2001). (2001) Zbl0981.35001MR1846644DOI10.1090/chel/343
- Zhang, Z., 10.1007/s00033-015-0500-7, Z. Angew. Math. Phys. 66 (2015), 1707-1715. (2015) Zbl1325.35147MR3377710DOI10.1007/s00033-015-0500-7
- Zhang, Z., Yao, Z.-A., Lu, M., Ni, L., 10.1063/1.3589966, J. Math. Phys. 52 (2011), 053103, 7 pages. (2011) Zbl1317.35180MR2839081DOI10.1063/1.3589966
- Zhou, Y., Pokorný, M., 10.1063/1.3268589, J. Math. Phys. 50 (2009), 123514, 11 pages. (2009) Zbl05772327MR2582610DOI10.1063/1.3268589
- Zhou, Y., Pokorný, M., 10.1088/0951-7715/23/5/004, Nonlinearity 23 (2010), 1097-1107. (2010) Zbl1190.35179MR2630092DOI10.1088/0951-7715/23/5/004
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.