Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component

Zujin Zhang

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 1, page 219-225
  • ISSN: 0011-4642

Abstract

top
We consider the Cauchy problem for the three-dimensional Navier-Stokes equations, and provide an optimal regularity criterion in terms of u 3 and ω 3 , which are the third components of the velocity and vorticity, respectively. This gives an affirmative answer to an open problem in the paper by P. Penel, M. Pokorný (2004).

How to cite

top

Zhang, Zujin. "Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component." Czechoslovak Mathematical Journal 68.1 (2018): 219-225. <http://eudml.org/doc/294242>.

@article{Zhang2018,
abstract = {We consider the Cauchy problem for the three-dimensional Navier-Stokes equations, and provide an optimal regularity criterion in terms of $u_3$ and $\omega _3$, which are the third components of the velocity and vorticity, respectively. This gives an affirmative answer to an open problem in the paper by P. Penel, M. Pokorný (2004).},
author = {Zhang, Zujin},
journal = {Czechoslovak Mathematical Journal},
keywords = {regularity criterion; Navier-Stokes equation},
language = {eng},
number = {1},
pages = {219-225},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component},
url = {http://eudml.org/doc/294242},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Zhang, Zujin
TI - Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 1
SP - 219
EP - 225
AB - We consider the Cauchy problem for the three-dimensional Navier-Stokes equations, and provide an optimal regularity criterion in terms of $u_3$ and $\omega _3$, which are the third components of the velocity and vorticity, respectively. This gives an affirmative answer to an open problem in the paper by P. Penel, M. Pokorný (2004).
LA - eng
KW - regularity criterion; Navier-Stokes equation
UR - http://eudml.org/doc/294242
ER -

References

top
  1. Veiga, H. Beirão da, A new regularity class for the Navier-Stokes equations in n , Chin. Ann. Math. Ser. B 16 (1995), 407-412. (1995) Zbl0837.35111MR1380578
  2. Cao, C., Titi, E. S., 10.1512/iumj.2008.57.3719, Indiana Univ. Math. J. 57 (2008), 2643-2661. (2008) Zbl1159.35053MR2482994DOI10.1512/iumj.2008.57.3719
  3. Cao, C., Titi, E. S., 10.1007/s00205-011-0439-6, Arch. Ration. Mech. Anal. 202 (2011), 919-932. (2011) Zbl1256.35051MR2854673DOI10.1007/s00205-011-0439-6
  4. Escauriaza, L., Serëgin, G. A., Shverak, V., 10.1070/RM2003v058n02ABEH000609, Russ. Math. Surv. 58 (2003), 211-250. English. Russian original translation from Usp. Mat. Nauk 58 2003 3-44. (2003) Zbl1064.35134MR1992563DOI10.1070/RM2003v058n02ABEH000609
  5. Hopf, E., 10.1002/mana.3210040121, Math. Nachr. 4 (1951), 213-231 German. (1951) MR0050423DOI10.1002/mana.3210040121
  6. Kukavica, I., Ziane, M., 10.1088/0951-7715/19/2/012, Nonlinearity 19 (2006), 453-469. (2006) Zbl1149.35069MR2199398DOI10.1088/0951-7715/19/2/012
  7. Kukavica, I., Ziane, M., 10.1063/1.2395919, J. Math. Phys. 48 (2007), 065203, 10 pages. (2007) Zbl1144.81373MR2337002DOI10.1063/1.2395919
  8. Leray, J., 10.1007/BF02547354, Acta Math. 63 (1934), 193-248 French 9999JFM99999 60.0726.05. (1934) MR1555394DOI10.1007/BF02547354
  9. Ohyama, T., 10.3792/pja/1195524029, Proc. Japan Acad. 36 (1960), 273-277. (1960) Zbl0100.22404MR0139856DOI10.3792/pja/1195524029
  10. Penel, P., Pokorný, M., 10.1023/B:APOM.0000048124.64244.7e, Appl. Math., Praha 49 (2004), 483-493. (2004) Zbl1099.35101MR2086090DOI10.1023/B:APOM.0000048124.64244.7e
  11. Penel, P., Pokorný, M., 10.1007/s00021-010-0038-6, J. Math. Fluid Mech. 13 (2011), 341-353. (2011) Zbl1270.35354MR2824487DOI10.1007/s00021-010-0038-6
  12. Prodi, G., 10.1007/BF02410664, Ann. Mat. Pura Appl., IV. Ser. 48 (1959), 173-182 Italian. (1959) MR0126088DOI10.1007/BF02410664
  13. Serrin, J., The initial value problem for the Navier-Stokes equations, Nonlinear Problems Proc. Symp., Madison, 1962, University of Wisconsin Press, Madison, Wisconsin (1963), 69-98. (1963) Zbl0115.08502MR0150444
  14. Skalák, Z., 10.1063/1.4904836, J. Math. Phys. 55 (2014), 121506, 6 pages. (2014) Zbl1308.35177MR3390527DOI10.1063/1.4904836
  15. Stein, E. M., 10.1515/9781400883882, Princeton Mathematical Series 30, Princeton University Press, Princeton (1970). (1970) Zbl0207.13501MR0290095DOI10.1515/9781400883882
  16. Temam, R., 10.1090/chel/343, American Mathematical Society, Chelsea Publishing, Providence (2001). (2001) Zbl0981.35001MR1846644DOI10.1090/chel/343
  17. Zhang, Z., 10.1007/s00033-015-0500-7, Z. Angew. Math. Phys. 66 (2015), 1707-1715. (2015) Zbl1325.35147MR3377710DOI10.1007/s00033-015-0500-7
  18. Zhang, Z., Yao, Z.-A., Lu, M., Ni, L., 10.1063/1.3589966, J. Math. Phys. 52 (2011), 053103, 7 pages. (2011) Zbl1317.35180MR2839081DOI10.1063/1.3589966
  19. Zhou, Y., Pokorný, M., 10.1063/1.3268589, J. Math. Phys. 50 (2009), 123514, 11 pages. (2009) Zbl05772327MR2582610DOI10.1063/1.3268589
  20. Zhou, Y., Pokorný, M., 10.1088/0951-7715/23/5/004, Nonlinearity 23 (2010), 1097-1107. (2010) Zbl1190.35179MR2630092DOI10.1088/0951-7715/23/5/004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.