Some properties of certain subclasses of bounded Mocanu variation with respect to 2 k -symmetric conjugate points

Rasoul Aghalary; Jafar Kazemzadeh

Mathematica Bohemica (2019)

  • Volume: 144, Issue: 2, page 191-202
  • ISSN: 0862-7959

Abstract

top
We introduce subclasses of analytic functions of bounded radius rotation, bounded boundary rotation and bounded Mocanu variation with respect to 2 k -symmetric conjugate points and study some of its basic properties.

How to cite

top

Aghalary, Rasoul, and Kazemzadeh, Jafar. "Some properties of certain subclasses of bounded Mocanu variation with respect to $2k$-symmetric conjugate points." Mathematica Bohemica 144.2 (2019): 191-202. <http://eudml.org/doc/294247>.

@article{Aghalary2019,
abstract = {We introduce subclasses of analytic functions of bounded radius rotation, bounded boundary rotation and bounded Mocanu variation with respect to $2k$-symmetric conjugate points and study some of its basic properties.},
author = {Aghalary, Rasoul, Kazemzadeh, Jafar},
journal = {Mathematica Bohemica},
keywords = {$2k$-symmetric conjuqate points; bounded Mocanu variation; bounded radius rotation; bounded boundary rotation},
language = {eng},
number = {2},
pages = {191-202},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some properties of certain subclasses of bounded Mocanu variation with respect to $2k$-symmetric conjugate points},
url = {http://eudml.org/doc/294247},
volume = {144},
year = {2019},
}

TY - JOUR
AU - Aghalary, Rasoul
AU - Kazemzadeh, Jafar
TI - Some properties of certain subclasses of bounded Mocanu variation with respect to $2k$-symmetric conjugate points
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 2
SP - 191
EP - 202
AB - We introduce subclasses of analytic functions of bounded radius rotation, bounded boundary rotation and bounded Mocanu variation with respect to $2k$-symmetric conjugate points and study some of its basic properties.
LA - eng
KW - $2k$-symmetric conjuqate points; bounded Mocanu variation; bounded radius rotation; bounded boundary rotation
UR - http://eudml.org/doc/294247
ER -

References

top
  1. Eenigenberg, P., Miller, S. S., Mocanu, P. T., Reade, M. O., 10.1007/978-3-0348-6290-5_26, General Inequalities 3 International Series of Numerical Mathematics 64. Birkhäuser, Basel (1983), 339-348 E. F. Beckenbach et al. (1983) Zbl0527.30008MR0785788DOI10.1007/978-3-0348-6290-5_26
  2. Graham, I., Kohr, G., 10.1201/9780203911624, Pure and Applied Mathematics 255. Marcel Dekker, New York (2003). (2003) Zbl1042.30001MR2017933DOI10.1201/9780203911624
  3. Miller, S. S., Mocanu, P. T., 10.1201/9781482289817, Pure and Applied Mathematics 225. Marcel Dekker, New York (2000). (2000) Zbl0954.34003MR1760285DOI10.1201/9781482289817
  4. Noor, K. I., 10.1155/S016117129200036X, Int. J. Math. Math. Sci. 15 (1992), 279-289. (1992) Zbl0758.30010MR1155521DOI10.1155/S016117129200036X
  5. Padmanabhan, K. S., Parvatham, R., 10.4064/ap-31-3-311-323, Ann. Pol. Math. 31 (1976), 311-323. (1976) Zbl0337.30009MR0390199DOI10.4064/ap-31-3-311-323
  6. Pinchuk, B., 10.1007/BF02771515, Isr. J. Math. 10 (1971), 6-16. (1971) Zbl0224.30024MR0301180DOI10.1007/BF02771515
  7. Sakaguchi, K., 10.2969/jmsj/01110072, J. Math. Soc. Japan. 11 (1959), 72-75. (1959) Zbl0085.29602MR0107005DOI10.2969/jmsj/01110072
  8. Wang, Z.-G., Gao, C.-Y., On starlike and convex functions with respect to 2 k -symmetric conjugate points, Tamsui Oxf. J. Math. Sci. 24 (2008), 277-287. (2008) Zbl1343.30014MR2456132
  9. Wang, Z.-G., Gao, C.-Y., Yuan, S.-M., 10.1016/j.jmaa.2005.08.060, J. Math. Anal. Appl. 322 (2006), 97-106. (2006) Zbl1102.30015MR2238151DOI10.1016/j.jmaa.2005.08.060

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.