Some properties of certain subclasses of bounded Mocanu variation with respect to -symmetric conjugate points
Rasoul Aghalary; Jafar Kazemzadeh
Mathematica Bohemica (2019)
- Volume: 144, Issue: 2, page 191-202
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topAghalary, Rasoul, and Kazemzadeh, Jafar. "Some properties of certain subclasses of bounded Mocanu variation with respect to $2k$-symmetric conjugate points." Mathematica Bohemica 144.2 (2019): 191-202. <http://eudml.org/doc/294247>.
@article{Aghalary2019,
abstract = {We introduce subclasses of analytic functions of bounded radius rotation, bounded boundary rotation and bounded Mocanu variation with respect to $2k$-symmetric conjugate points and study some of its basic properties.},
author = {Aghalary, Rasoul, Kazemzadeh, Jafar},
journal = {Mathematica Bohemica},
keywords = {$2k$-symmetric conjuqate points; bounded Mocanu variation; bounded radius rotation; bounded boundary rotation},
language = {eng},
number = {2},
pages = {191-202},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some properties of certain subclasses of bounded Mocanu variation with respect to $2k$-symmetric conjugate points},
url = {http://eudml.org/doc/294247},
volume = {144},
year = {2019},
}
TY - JOUR
AU - Aghalary, Rasoul
AU - Kazemzadeh, Jafar
TI - Some properties of certain subclasses of bounded Mocanu variation with respect to $2k$-symmetric conjugate points
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 2
SP - 191
EP - 202
AB - We introduce subclasses of analytic functions of bounded radius rotation, bounded boundary rotation and bounded Mocanu variation with respect to $2k$-symmetric conjugate points and study some of its basic properties.
LA - eng
KW - $2k$-symmetric conjuqate points; bounded Mocanu variation; bounded radius rotation; bounded boundary rotation
UR - http://eudml.org/doc/294247
ER -
References
top- Eenigenberg, P., Miller, S. S., Mocanu, P. T., Reade, M. O., 10.1007/978-3-0348-6290-5_26, General Inequalities 3 International Series of Numerical Mathematics 64. Birkhäuser, Basel (1983), 339-348 E. F. Beckenbach et al. (1983) Zbl0527.30008MR0785788DOI10.1007/978-3-0348-6290-5_26
- Graham, I., Kohr, G., 10.1201/9780203911624, Pure and Applied Mathematics 255. Marcel Dekker, New York (2003). (2003) Zbl1042.30001MR2017933DOI10.1201/9780203911624
- Miller, S. S., Mocanu, P. T., 10.1201/9781482289817, Pure and Applied Mathematics 225. Marcel Dekker, New York (2000). (2000) Zbl0954.34003MR1760285DOI10.1201/9781482289817
- Noor, K. I., 10.1155/S016117129200036X, Int. J. Math. Math. Sci. 15 (1992), 279-289. (1992) Zbl0758.30010MR1155521DOI10.1155/S016117129200036X
- Padmanabhan, K. S., Parvatham, R., 10.4064/ap-31-3-311-323, Ann. Pol. Math. 31 (1976), 311-323. (1976) Zbl0337.30009MR0390199DOI10.4064/ap-31-3-311-323
- Pinchuk, B., 10.1007/BF02771515, Isr. J. Math. 10 (1971), 6-16. (1971) Zbl0224.30024MR0301180DOI10.1007/BF02771515
- Sakaguchi, K., 10.2969/jmsj/01110072, J. Math. Soc. Japan. 11 (1959), 72-75. (1959) Zbl0085.29602MR0107005DOI10.2969/jmsj/01110072
- Wang, Z.-G., Gao, C.-Y., On starlike and convex functions with respect to -symmetric conjugate points, Tamsui Oxf. J. Math. Sci. 24 (2008), 277-287. (2008) Zbl1343.30014MR2456132
- Wang, Z.-G., Gao, C.-Y., Yuan, S.-M., 10.1016/j.jmaa.2005.08.060, J. Math. Anal. Appl. 322 (2006), 97-106. (2006) Zbl1102.30015MR2238151DOI10.1016/j.jmaa.2005.08.060
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.