A note on generalizations of semisimple modules
Engin Kaynar; Burcu N. Türkmen; Ergül Türkmen
Commentationes Mathematicae Universitatis Carolinae (2019)
- Volume: 60, Issue: 3, page 305-312
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKaynar, Engin, Türkmen, Burcu N., and Türkmen, Ergül. "A note on generalizations of semisimple modules." Commentationes Mathematicae Universitatis Carolinae 60.3 (2019): 305-312. <http://eudml.org/doc/294249>.
@article{Kaynar2019,
abstract = {A left module $M$ over an arbitrary ring is called an $\mathcal \{RD\}$-module (or an $\mathcal \{RS\}$-module) if every submodule $N$ of $M$ with $\{\rm Rad\}(M)\subseteq N$ is a direct summand of (a supplement in, respectively) $M$. In this paper, we investigate the various properties of $\mathcal \{RD\}$-modules and $\mathcal \{RS\}$-modules. We prove that $M$ is an $\mathcal \{RD\}$-module if and only if $M=\{\rm Rad\}(M)\oplus X$, where $X$ is semisimple. We show that a finitely generated $\mathcal \{RS\}$-module is semisimple. This gives us the characterization of semisimple rings in terms of $\mathcal \{RS\}$-modules. We completely determine the structure of these modules over Dedekind domains.},
author = {Kaynar, Engin, Türkmen, Burcu N., Türkmen, Ergül},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {radical; supplement},
language = {eng},
number = {3},
pages = {305-312},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A note on generalizations of semisimple modules},
url = {http://eudml.org/doc/294249},
volume = {60},
year = {2019},
}
TY - JOUR
AU - Kaynar, Engin
AU - Türkmen, Burcu N.
AU - Türkmen, Ergül
TI - A note on generalizations of semisimple modules
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 3
SP - 305
EP - 312
AB - A left module $M$ over an arbitrary ring is called an $\mathcal {RD}$-module (or an $\mathcal {RS}$-module) if every submodule $N$ of $M$ with ${\rm Rad}(M)\subseteq N$ is a direct summand of (a supplement in, respectively) $M$. In this paper, we investigate the various properties of $\mathcal {RD}$-modules and $\mathcal {RS}$-modules. We prove that $M$ is an $\mathcal {RD}$-module if and only if $M={\rm Rad}(M)\oplus X$, where $X$ is semisimple. We show that a finitely generated $\mathcal {RS}$-module is semisimple. This gives us the characterization of semisimple rings in terms of $\mathcal {RS}$-modules. We completely determine the structure of these modules over Dedekind domains.
LA - eng
KW - radical; supplement
UR - http://eudml.org/doc/294249
ER -
References
top- Alizade R., Bilhan G., Smith P. F., 10.1081/AGB-100002396, Comm. Algebra 29 (2001), no. 6, 2389–2405. MR1845118DOI10.1081/AGB-100002396
- Büyükaşik E., Pusat-Yilmaz D., Modules whose maximal submodules are supplements, Hacet. J. Math. Stat. 39 (2010), no. 4, 477–487. MR2796587
- Büyükaşik E., Türkmen E., Strongly radical supplemented modules, Ukrainian Math. J. 63 (2012), no. 8, 1306–1313. MR3109654
- Lomp C., 10.1080/00927879908826539, Comm. Algebra 27 (1999), no. 4, 1921–1935. MR1679679DOI10.1080/00927879908826539
- Nebiyev C., Pancar A., 10.1007/s11253-013-0842-2, Ukrainian Math. J. 65 (2013), no. 7, 1071–1078. MR3145891DOI10.1007/s11253-013-0842-2
- Türkmen B. N., Pancar A., 10.1007/s11253-013-0799-1, Ukrainian Math. J. 65 (2013), no. 4, 612–622. MR3125012DOI10.1007/s11253-013-0799-1
- Türkmen B. N., Türkmen E., On a generalization of weakly supplemented modules, An. Ştiin. Univ. Al. I. Cuza Din Iaşi. Mat. (N.S.) 63 (2017), no. 2, 441–448. MR3718613
- Wisbauer R., Foundations of Module and Ring Theory, A handbook for study and research, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, 1991. Zbl0746.16001MR1144522
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.