A note on generalizations of semisimple modules

Engin Kaynar; Burcu N. Türkmen; Ergül Türkmen

Commentationes Mathematicae Universitatis Carolinae (2019)

  • Volume: 60, Issue: 3, page 305-312
  • ISSN: 0010-2628

Abstract

top
A left module M over an arbitrary ring is called an ℛ𝒟 -module (or an ℛ𝒮 -module) if every submodule N of M with Rad ( M ) N is a direct summand of (a supplement in, respectively) M . In this paper, we investigate the various properties of ℛ𝒟 -modules and ℛ𝒮 -modules. We prove that M is an ℛ𝒟 -module if and only if M = Rad ( M ) X , where X is semisimple. We show that a finitely generated ℛ𝒮 -module is semisimple. This gives us the characterization of semisimple rings in terms of ℛ𝒮 -modules. We completely determine the structure of these modules over Dedekind domains.

How to cite

top

Kaynar, Engin, Türkmen, Burcu N., and Türkmen, Ergül. "A note on generalizations of semisimple modules." Commentationes Mathematicae Universitatis Carolinae 60.3 (2019): 305-312. <http://eudml.org/doc/294249>.

@article{Kaynar2019,
abstract = {A left module $M$ over an arbitrary ring is called an $\mathcal \{RD\}$-module (or an $\mathcal \{RS\}$-module) if every submodule $N$ of $M$ with $\{\rm Rad\}(M)\subseteq N$ is a direct summand of (a supplement in, respectively) $M$. In this paper, we investigate the various properties of $\mathcal \{RD\}$-modules and $\mathcal \{RS\}$-modules. We prove that $M$ is an $\mathcal \{RD\}$-module if and only if $M=\{\rm Rad\}(M)\oplus X$, where $X$ is semisimple. We show that a finitely generated $\mathcal \{RS\}$-module is semisimple. This gives us the characterization of semisimple rings in terms of $\mathcal \{RS\}$-modules. We completely determine the structure of these modules over Dedekind domains.},
author = {Kaynar, Engin, Türkmen, Burcu N., Türkmen, Ergül},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {radical; supplement},
language = {eng},
number = {3},
pages = {305-312},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A note on generalizations of semisimple modules},
url = {http://eudml.org/doc/294249},
volume = {60},
year = {2019},
}

TY - JOUR
AU - Kaynar, Engin
AU - Türkmen, Burcu N.
AU - Türkmen, Ergül
TI - A note on generalizations of semisimple modules
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 3
SP - 305
EP - 312
AB - A left module $M$ over an arbitrary ring is called an $\mathcal {RD}$-module (or an $\mathcal {RS}$-module) if every submodule $N$ of $M$ with ${\rm Rad}(M)\subseteq N$ is a direct summand of (a supplement in, respectively) $M$. In this paper, we investigate the various properties of $\mathcal {RD}$-modules and $\mathcal {RS}$-modules. We prove that $M$ is an $\mathcal {RD}$-module if and only if $M={\rm Rad}(M)\oplus X$, where $X$ is semisimple. We show that a finitely generated $\mathcal {RS}$-module is semisimple. This gives us the characterization of semisimple rings in terms of $\mathcal {RS}$-modules. We completely determine the structure of these modules over Dedekind domains.
LA - eng
KW - radical; supplement
UR - http://eudml.org/doc/294249
ER -

References

top
  1. Alizade R., Bilhan G., Smith P. F., 10.1081/AGB-100002396, Comm. Algebra 29 (2001), no. 6, 2389–2405. MR1845118DOI10.1081/AGB-100002396
  2. Büyükaşik E., Pusat-Yilmaz D., Modules whose maximal submodules are supplements, Hacet. J. Math. Stat. 39 (2010), no. 4, 477–487. MR2796587
  3. Büyükaşik E., Türkmen E., Strongly radical supplemented modules, Ukrainian Math. J. 63 (2012), no. 8, 1306–1313. MR3109654
  4. Lomp C., 10.1080/00927879908826539, Comm. Algebra 27 (1999), no. 4, 1921–1935. MR1679679DOI10.1080/00927879908826539
  5. Nebiyev C., Pancar A., 10.1007/s11253-013-0842-2, Ukrainian Math. J. 65 (2013), no. 7, 1071–1078. MR3145891DOI10.1007/s11253-013-0842-2
  6. Türkmen B. N., Pancar A., 10.1007/s11253-013-0799-1, Ukrainian Math. J. 65 (2013), no. 4, 612–622. MR3125012DOI10.1007/s11253-013-0799-1
  7. Türkmen B. N., Türkmen E., On a generalization of weakly supplemented modules, An. Ştiin. Univ. Al. I. Cuza Din Iaşi. Mat. (N.S.) 63 (2017), no. 2, 441–448. MR3718613
  8. Wisbauer R., Foundations of Module and Ring Theory, A handbook for study and research, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, 1991. Zbl0746.16001MR1144522

NotesEmbed ?

top

You must be logged in to post comments.