Hölder continuity of bounded generalized solutions for some degenerated quasilinear elliptic equations with natural growth terms
Commentationes Mathematicae Universitatis Carolinae (2018)
- Volume: 59, Issue: 1, page 45-64
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBonafede, Salvatore. "Hölder continuity of bounded generalized solutions for some degenerated quasilinear elliptic equations with natural growth terms." Commentationes Mathematicae Universitatis Carolinae 59.1 (2018): 45-64. <http://eudml.org/doc/294252>.
@article{Bonafede2018,
abstract = {We prove the local Hölder continuity of bounded generalized solutions of the Dirichlet problem associated to the equation $\sum _\{i =1\}^\{m\} \frac\{\partial \}\{\partial x_i\} a_i (x, u, \nabla u) - c_0 |u|^\{p-2\} u = f(x, u, \nabla u),$ assuming that the principal part of the equation satisfies the following degenerate ellipticity condition $\lambda (|u|) \sum _\{i=1\}^m a_i (x,u, \eta ) \eta _i \ge \nu (x) |\eta |^p,$ and the lower-order term $f$ has a natural growth with respect to $\nabla u$.},
author = {Bonafede, Salvatore},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {elliptic equations; weight function; regularity of solutions},
language = {eng},
number = {1},
pages = {45-64},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Hölder continuity of bounded generalized solutions for some degenerated quasilinear elliptic equations with natural growth terms},
url = {http://eudml.org/doc/294252},
volume = {59},
year = {2018},
}
TY - JOUR
AU - Bonafede, Salvatore
TI - Hölder continuity of bounded generalized solutions for some degenerated quasilinear elliptic equations with natural growth terms
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 1
SP - 45
EP - 64
AB - We prove the local Hölder continuity of bounded generalized solutions of the Dirichlet problem associated to the equation $\sum _{i =1}^{m} \frac{\partial }{\partial x_i} a_i (x, u, \nabla u) - c_0 |u|^{p-2} u = f(x, u, \nabla u),$ assuming that the principal part of the equation satisfies the following degenerate ellipticity condition $\lambda (|u|) \sum _{i=1}^m a_i (x,u, \eta ) \eta _i \ge \nu (x) |\eta |^p,$ and the lower-order term $f$ has a natural growth with respect to $\nabla u$.
LA - eng
KW - elliptic equations; weight function; regularity of solutions
UR - http://eudml.org/doc/294252
ER -
References
top- Bensoussan A., Boccardo L., Murat F., 10.1016/S0294-1449(16)30342-0, Ann. Inst. Henri Poincaré 5 (1988), no. 4, 347–364. DOI10.1016/S0294-1449(16)30342-0
- Boccardo L., Murat F., Puel J. P., Existence de solutions faibles pour des équations elliptiques quasi-linéares à croissance quadratique, Nonlinear Partial Differential Equations and Their Applications, College de France Seminar, Vol. IV, Res. Notes in Math., 84, Pitman, London, 1983, 19–73 (French. English summary).
- Boccardo L., Murat F., Puel J. P., Résultat d'existence pour certains problèmes elliptiques quasilinéaires, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), no. 2, 213–235 (French).
- Bonafede S., Quasilinear degenerate elliptic variational inequalities with discontinuous coefficients, Comment. Math. Univ. Carolin. 34 (1993), no. 1, 55–61.
- Bonafede S., 10.9734/BJMCS/2016/28702, Br. J. Math. Comput. Sci. 18 (2016), no. 5, 1–18. DOI10.9734/BJMCS/2016/28702
- Bonafede S., Existence of bounded solutions of Neumann problem for a nonlinear degenerate elliptic equation, Electron. J. Differential Equations 2017 (2017), no. 270, 1–21.
- Cirmi G. R., D'Asero S., Leonardi S., Fourth-order nonlinear elliptic equations with lower order term and natural growth conditions, Nonlinear Anal. 108 (2014), 66–86.
- Del Vecchio T., Strongly nonlinear problems with hamiltonian having natural growth, Houston J. Math. 16 (1990), no. 1, 7–24.
- Drábek P., Nicolosi F., 10.1007/BF01765850, Ann. Mat. Pura Appl. 165 (1993), 217–238. DOI10.1007/BF01765850
- Fabes E. B., Kenig C. E., Serapioni R. P., 10.1080/03605308208820218, Comm. Partial Differential Equations 7 (1982), 77–116. DOI10.1080/03605308208820218
- Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983. Zbl1042.35002
- Guglielmino F., Nicolosi F., -solutions of boundary value problems for degenerate elliptic operators, Ricerche Mat. 36 (1987), suppl., 59–72.
- Guglielmino F., Nicolosi F., Existence theorems for boundary value problems associated with quasilinear elliptic equations, Ricerche Mat. 37 (1988), 157–176.
- John F., Nirenberg L., 10.1002/cpa.3160140317, Comm. Pure Appl. Math. 14 (1961), 415–426. DOI10.1002/cpa.3160140317
- Kovalevsky A., Nicolosi F., 10.1080/00036819708840560, Appl. Anal. 65 (1997), 225–249. DOI10.1080/00036819708840560
- Kovalevsky A., Nicolosi F., On Hölder continuity of solutions of equations and variational inequalities with degenerate nonlinear elliptic high order operators, Current Problems of Analysis and Mathematical Physics, Taormina 1998, Aracne, Rome, 2000, 205–220.
- Kovalevsky A., Nicolosi F., 10.1016/S0362-546X(98)00110-2, Nonlinear Anal. 35 (1999), 987–999. DOI10.1016/S0362-546X(98)00110-2
- Kovalevsky A., Nicolosi F., On regularity up to the boundary of solutions to degenerate nonlinear elliptic high order equations, Nonlinear Anal. 40 (2000), 365–379.
- Ladyzhenskaya O., Ural'tseva N., Linear and Quasilinear Elliptic Equations, translated from the Russian, Academic Press, New York-London, 1968. Zbl0177.37404
- Landes R., 10.1016/0022-247X(89)90230-8, J. Math. Anal. Appl. 139 (1989), 63–77. DOI10.1016/0022-247X(89)90230-8
- Moser J., 10.1002/cpa.3160130308, Comm. Pure Appl. Math. 13 (1960), pp. 457–468. DOI10.1002/cpa.3160130308
- Murthy M. K. V., Stampacchia G., 10.1007/BF02413623, Ann. Mat. Pura Appl. (4) 80 (1968), 1–122. DOI10.1007/BF02413623
- Serrin J. B., 10.1007/BF02391014, Acta Math. 111 (1964), 247–302. DOI10.1007/BF02391014
- Skrypnik I. V., Nonlinear Higher Order Elliptic Equations, Naukova dumka, Kiev, 1973 (Russian).
- Skrypnik I. V., Higher order quasilinear elliptic equations with continuous generalized solutions, Differ. Equ. 14 (1978), no. 6, 786–795.
- Trudinger N. S., 10.1002/cpa.3160200406, Comm. Pure Appl. Math. 20 (1967), 721–747. DOI10.1002/cpa.3160200406
- Trudinger N. S., 10.1007/BF00282317, Arch. Ration. Mech. Anal. 42 (1971), 51–62. DOI10.1007/BF00282317
- Trudinger N. S., Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa 27 (1973), 265–308.
- Voitovich M. V., Existence of bounded solutions for a class of nonlinear fourth-order equations, Differ. Equ. Appl. 3 (2011), no. 2, 247–266.
- Voitovich M. V., Existence of bounded solutions for nonlinear fourth-order elliptic equations with strengthened coercivity and lower-terms with natural growth, Electron. J. Differential Equations 2013 (2013), no. 102, 25 pages.
- Voitovich M. V., 10.1007/s10958-015-2550-y, J. Math. Sci. (N.Y.) 210 (2015), no. 1, 86–113. DOI10.1007/s10958-015-2550-y
- Voitovych M. V., Hölder continuity of bounded generalized solutions for nonlinear fourth-order elliptic equations with strengthened coercivity and natural growth terms, Electron. J. Differential Equations 2017 (2017), no. 63, 18 pages.
- Zamboni P., 10.1006/jdeq.2001.4094, J. Differential Equations 182 (2002), 121–140. DOI10.1006/jdeq.2001.4094
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.