Hölder continuity of bounded generalized solutions for some degenerated quasilinear elliptic equations with natural growth terms

Salvatore Bonafede

Commentationes Mathematicae Universitatis Carolinae (2018)

  • Volume: 59, Issue: 1, page 45-64
  • ISSN: 0010-2628

Abstract

top
We prove the local Hölder continuity of bounded generalized solutions of the Dirichlet problem associated to the equation i = 1 m x i a i ( x , u , u ) - c 0 | u | p - 2 u = f ( x , u , u ) , assuming that the principal part of the equation satisfies the following degenerate ellipticity condition λ ( | u | ) i = 1 m a i ( x , u , η ) η i ν ( x ) | η | p , and the lower-order term f has a natural growth with respect to u .

How to cite

top

Bonafede, Salvatore. "Hölder continuity of bounded generalized solutions for some degenerated quasilinear elliptic equations with natural growth terms." Commentationes Mathematicae Universitatis Carolinae 59.1 (2018): 45-64. <http://eudml.org/doc/294252>.

@article{Bonafede2018,
abstract = {We prove the local Hölder continuity of bounded generalized solutions of the Dirichlet problem associated to the equation $\sum _\{i =1\}^\{m\} \frac\{\partial \}\{\partial x_i\} a_i (x, u, \nabla u) - c_0 |u|^\{p-2\} u = f(x, u, \nabla u),$ assuming that the principal part of the equation satisfies the following degenerate ellipticity condition $\lambda (|u|) \sum _\{i=1\}^m a_i (x,u, \eta ) \eta _i \ge \nu (x) |\eta |^p,$ and the lower-order term $f$ has a natural growth with respect to $\nabla u$.},
author = {Bonafede, Salvatore},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {elliptic equations; weight function; regularity of solutions},
language = {eng},
number = {1},
pages = {45-64},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Hölder continuity of bounded generalized solutions for some degenerated quasilinear elliptic equations with natural growth terms},
url = {http://eudml.org/doc/294252},
volume = {59},
year = {2018},
}

TY - JOUR
AU - Bonafede, Salvatore
TI - Hölder continuity of bounded generalized solutions for some degenerated quasilinear elliptic equations with natural growth terms
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 1
SP - 45
EP - 64
AB - We prove the local Hölder continuity of bounded generalized solutions of the Dirichlet problem associated to the equation $\sum _{i =1}^{m} \frac{\partial }{\partial x_i} a_i (x, u, \nabla u) - c_0 |u|^{p-2} u = f(x, u, \nabla u),$ assuming that the principal part of the equation satisfies the following degenerate ellipticity condition $\lambda (|u|) \sum _{i=1}^m a_i (x,u, \eta ) \eta _i \ge \nu (x) |\eta |^p,$ and the lower-order term $f$ has a natural growth with respect to $\nabla u$.
LA - eng
KW - elliptic equations; weight function; regularity of solutions
UR - http://eudml.org/doc/294252
ER -

References

top
  1. Bensoussan A., Boccardo L., Murat F., 10.1016/S0294-1449(16)30342-0, Ann. Inst. Henri Poincaré 5 (1988), no. 4, 347–364. DOI10.1016/S0294-1449(16)30342-0
  2. Boccardo L., Murat F., Puel J. P., Existence de solutions faibles pour des équations elliptiques quasi-linéares à croissance quadratique, Nonlinear Partial Differential Equations and Their Applications, College de France Seminar, Vol. IV, Res. Notes in Math., 84, Pitman, London, 1983, 19–73 (French. English summary). 
  3. Boccardo L., Murat F., Puel J. P., Résultat d'existence pour certains problèmes elliptiques quasilinéaires, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), no. 2, 213–235 (French). 
  4. Bonafede S., Quasilinear degenerate elliptic variational inequalities with discontinuous coefficients, Comment. Math. Univ. Carolin. 34 (1993), no. 1, 55–61. 
  5. Bonafede S., 10.9734/BJMCS/2016/28702, Br. J. Math. Comput. Sci. 18 (2016), no. 5, 1–18. DOI10.9734/BJMCS/2016/28702
  6. Bonafede S., Existence of bounded solutions of Neumann problem for a nonlinear degenerate elliptic equation, Electron. J. Differential Equations 2017 (2017), no. 270, 1–21. 
  7. Cirmi G. R., D'Asero S., Leonardi S., Fourth-order nonlinear elliptic equations with lower order term and natural growth conditions, Nonlinear Anal. 108 (2014), 66–86. 
  8. Del Vecchio T., Strongly nonlinear problems with hamiltonian having natural growth, Houston J. Math. 16 (1990), no. 1, 7–24. 
  9. Drábek P., Nicolosi F., 10.1007/BF01765850, Ann. Mat. Pura Appl. 165 (1993), 217–238. DOI10.1007/BF01765850
  10. Fabes E. B., Kenig C. E., Serapioni R. P., 10.1080/03605308208820218, Comm. Partial Differential Equations 7 (1982), 77–116. DOI10.1080/03605308208820218
  11. Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983. Zbl1042.35002
  12. Guglielmino F., Nicolosi F., W -solutions of boundary value problems for degenerate elliptic operators, Ricerche Mat. 36 (1987), suppl., 59–72. 
  13. Guglielmino F., Nicolosi F., Existence theorems for boundary value problems associated with quasilinear elliptic equations, Ricerche Mat. 37 (1988), 157–176. 
  14. John F., Nirenberg L., 10.1002/cpa.3160140317, Comm. Pure Appl. Math. 14 (1961), 415–426. DOI10.1002/cpa.3160140317
  15. Kovalevsky A., Nicolosi F., 10.1080/00036819708840560, Appl. Anal. 65 (1997), 225–249. DOI10.1080/00036819708840560
  16. Kovalevsky A., Nicolosi F., On Hölder continuity of solutions of equations and variational inequalities with degenerate nonlinear elliptic high order operators, Current Problems of Analysis and Mathematical Physics, Taormina 1998, Aracne, Rome, 2000, 205–220. 
  17. Kovalevsky A., Nicolosi F., 10.1016/S0362-546X(98)00110-2, Nonlinear Anal. 35 (1999), 987–999. DOI10.1016/S0362-546X(98)00110-2
  18. Kovalevsky A., Nicolosi F., On regularity up to the boundary of solutions to degenerate nonlinear elliptic high order equations, Nonlinear Anal. 40 (2000), 365–379. 
  19. Ladyzhenskaya O., Ural'tseva N., Linear and Quasilinear Elliptic Equations, translated from the Russian, Academic Press, New York-London, 1968. Zbl0177.37404
  20. Landes R., 10.1016/0022-247X(89)90230-8, J. Math. Anal. Appl. 139 (1989), 63–77. DOI10.1016/0022-247X(89)90230-8
  21. Moser J., 10.1002/cpa.3160130308, Comm. Pure Appl. Math. 13 (1960), pp. 457–468. DOI10.1002/cpa.3160130308
  22. Murthy M. K. V., Stampacchia G., 10.1007/BF02413623, Ann. Mat. Pura Appl. (4) 80 (1968), 1–122. DOI10.1007/BF02413623
  23. Serrin J. B., 10.1007/BF02391014, Acta Math. 111 (1964), 247–302. DOI10.1007/BF02391014
  24. Skrypnik I. V., Nonlinear Higher Order Elliptic Equations, Naukova dumka, Kiev, 1973 (Russian). 
  25. Skrypnik I. V., Higher order quasilinear elliptic equations with continuous generalized solutions, Differ. Equ. 14 (1978), no. 6, 786–795. 
  26. Trudinger N. S., 10.1002/cpa.3160200406, Comm. Pure Appl. Math. 20 (1967), 721–747. DOI10.1002/cpa.3160200406
  27. Trudinger N. S., 10.1007/BF00282317, Arch. Ration. Mech. Anal. 42 (1971), 51–62. DOI10.1007/BF00282317
  28. Trudinger N. S., Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa 27 (1973), 265–308. 
  29. Voitovich M. V., Existence of bounded solutions for a class of nonlinear fourth-order equations, Differ. Equ. Appl. 3 (2011), no. 2, 247–266. 
  30. Voitovich M. V., Existence of bounded solutions for nonlinear fourth-order elliptic equations with strengthened coercivity and lower-terms with natural growth, Electron. J. Differential Equations 2013 (2013), no. 102, 25 pages. 
  31. Voitovich M. V., 10.1007/s10958-015-2550-y, J. Math. Sci. (N.Y.) 210 (2015), no. 1, 86–113. DOI10.1007/s10958-015-2550-y
  32. Voitovych M. V., Hölder continuity of bounded generalized solutions for nonlinear fourth-order elliptic equations with strengthened coercivity and natural growth terms, Electron. J. Differential Equations 2017 (2017), no. 63, 18 pages. 
  33. Zamboni P., 10.1006/jdeq.2001.4094, J. Differential Equations 182 (2002), 121–140. DOI10.1006/jdeq.2001.4094

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.