On weakly-supplemented subgroups and the solvability of finite groups
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 2, page 331-335
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhou, Qiang. "On weakly-supplemented subgroups and the solvability of finite groups." Czechoslovak Mathematical Journal 69.2 (2019): 331-335. <http://eudml.org/doc/294255>.
@article{Zhou2019,
abstract = {A subgroup $H$ of a finite group $G$ is weakly-supplemented in $G$ if there exists a proper subgroup $K$ of $G$ such that $G=HK$. In this paper, some interesting results with weakly-supplemented minimal subgroups or Sylow subgroups of $G$ are obtained.},
author = {Zhou, Qiang},
journal = {Czechoslovak Mathematical Journal},
keywords = {weakly-supplemented subgroup; complemented subgroup; solvable group},
language = {eng},
number = {2},
pages = {331-335},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On weakly-supplemented subgroups and the solvability of finite groups},
url = {http://eudml.org/doc/294255},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Zhou, Qiang
TI - On weakly-supplemented subgroups and the solvability of finite groups
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 2
SP - 331
EP - 335
AB - A subgroup $H$ of a finite group $G$ is weakly-supplemented in $G$ if there exists a proper subgroup $K$ of $G$ such that $G=HK$. In this paper, some interesting results with weakly-supplemented minimal subgroups or Sylow subgroups of $G$ are obtained.
LA - eng
KW - weakly-supplemented subgroup; complemented subgroup; solvable group
UR - http://eudml.org/doc/294255
ER -
References
top- Arad, Z., Ward, M. B., 10.1016/0021-8693(82)90288-5, J. Algebra 77 (1982), 234-246. (1982) Zbl0486.20018MR0665175DOI10.1016/0021-8693(82)90288-5
- Doerk, K., Hawkes, T., 10.1515/9783110870138, De Gruyter Expositions in Mathematics 4, de Gruyter, Berlin (1992). (1992) Zbl0753.20001MR1169099DOI10.1515/9783110870138
- Guralnick, R. M., 10.1016/0021-8693(83)90190-4, J. Algebra 81 (1983), 304-311. (1983) Zbl0515.20011MR0700286DOI10.1016/0021-8693(83)90190-4
- Hall, P., 10.1112/jlms/s1-12.2.198, J. Lond. Math. Soc. 12 (1937), 198-200. (1937) Zbl0016.39204MR1575073DOI10.1112/jlms/s1-12.2.198
- Hall, P., 10.1112/jlms/s1-12.2.201, J. London Math. Soc. 12 (1937), 201-204. (1937) Zbl0016.39301MR1575074DOI10.1112/jlms/s1-12.2.201
- Huppert, B., 10.1007/978-3-642-64981-3, Springer, Berlin (1967), German. (1967) Zbl0217.07201MR0224703DOI10.1007/978-3-642-64981-3
- Kong, Q., Liu, Q., 10.1007/s10587-014-0092-y, Czech. Math. J. 64 (2014), 173-182. (2014) Zbl1321.20021MR3247453DOI10.1007/s10587-014-0092-y
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.