Infinitesimal CR automorphisms for a class of polynomial models

Martin Kolář; Francine Meylan

Archivum Mathematicum (2017)

  • Volume: 053, Issue: 5, page 255-265
  • ISSN: 0044-8753

Abstract

top
In this paper we study infinitesimal CR automorphisms of Levi degenerate hypersurfaces. We illustrate the recent general results of [18], [17], [15], on a class of concrete examples, polynomial models in 3 of the form w = ( P ( z ) Q ( z ) ¯ ) , where P and Q are weighted homogeneous holomorphic polynomials in z = ( z 1 , z 2 ) . We classify such models according to their Lie algebra of infinitesimal CR automorphisms. We also give the first example of a non monomial model which admits a nonlinear rigid automorphism.

How to cite

top

Kolář, Martin, and Meylan, Francine. "Infinitesimal CR automorphisms for a class of polynomial models." Archivum Mathematicum 053.5 (2017): 255-265. <http://eudml.org/doc/294258>.

@article{Kolář2017,
abstract = {In this paper we study infinitesimal CR automorphisms of Levi degenerate hypersurfaces. We illustrate the recent general results of [18], [17], [15], on a class of concrete examples, polynomial models in $\mathbb \{C\}^3$ of the form $\Im \; w = \Re (P(z) \overline\{Q(z)\}) $, where $P$ and $Q$ are weighted homogeneous holomorphic polynomials in $z = (z_1, z_2)$. We classify such models according to their Lie algebra of infinitesimal CR automorphisms. We also give the first example of a non monomial model which admits a nonlinear rigid automorphism.},
author = {Kolář, Martin, Meylan, Francine},
journal = {Archivum Mathematicum},
keywords = {Levi degenerate hypersurfaces; finite multitype; polynomial models; infinitesimal CR automorphisms},
language = {eng},
number = {5},
pages = {255-265},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Infinitesimal CR automorphisms for a class of polynomial models},
url = {http://eudml.org/doc/294258},
volume = {053},
year = {2017},
}

TY - JOUR
AU - Kolář, Martin
AU - Meylan, Francine
TI - Infinitesimal CR automorphisms for a class of polynomial models
JO - Archivum Mathematicum
PY - 2017
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 053
IS - 5
SP - 255
EP - 265
AB - In this paper we study infinitesimal CR automorphisms of Levi degenerate hypersurfaces. We illustrate the recent general results of [18], [17], [15], on a class of concrete examples, polynomial models in $\mathbb {C}^3$ of the form $\Im \; w = \Re (P(z) \overline{Q(z)}) $, where $P$ and $Q$ are weighted homogeneous holomorphic polynomials in $z = (z_1, z_2)$. We classify such models according to their Lie algebra of infinitesimal CR automorphisms. We also give the first example of a non monomial model which admits a nonlinear rigid automorphism.
LA - eng
KW - Levi degenerate hypersurfaces; finite multitype; polynomial models; infinitesimal CR automorphisms
UR - http://eudml.org/doc/294258
ER -

References

top
  1. Baouendi, M.S., Ebenfelt, P., Rothschild, L.P., 10.1090/S0273-0979-00-00863-6, Bull. Amer. Math. Soc. (N.S.) 37 (3) (2000), 309–336. (2000) MR1754643DOI10.1090/S0273-0979-00-00863-6
  2. Bedford, E., Pinchuk, S.I., Convex domains with noncompact groups of automorphisms, Mat. Sb. 185 (1994), 3–26. (1994) MR1275970
  3. Bloom, T., Graham, I., 10.1007/BF01425740, Invent. Math. 40 (3) (1977), 217–243. (1977) MR0589930DOI10.1007/BF01425740
  4. Cartan, E., 10.1007/BF02417822, Ann. Math. Pura Appl. 11 (1932), 17–90. (1932) MR1553196DOI10.1007/BF02417822
  5. Cartan, E., Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, II, Ann. Scuola Norm. Sup. Pisa 1 (1932), 333–354. (1932) MR1556687
  6. Catlin, D., Boundary invariants of pseudoconvex domains, Ann. of Math. (2) 120 (1984), 529–586. (1984) Zbl0583.32048MR0769163
  7. Chern, S. S., Moser, J., 10.1007/BF02392146, Acta Math. 133 (1974), 219–271. (1974) MR0425155DOI10.1007/BF02392146
  8. D’Angelo, J., Orders od contact, real hypersurfaces and applications, Ann. of Math. (2) 115 (1982), 615–637. (1982) MR0657241
  9. Kim, S.Y., Zaitsev, D., 10.1016/j.top.2004.11.004, Topology 44 (2005), 557–584. (2005) Zbl1079.32022MR2122216DOI10.1016/j.top.2004.11.004
  10. Kohn, J.J., 10.4310/jdg/1214430641, J. Differential Geom. 6 (1972), 523–542. (1972) MR0322365DOI10.4310/jdg/1214430641
  11. Kolář, M., 10.4310/MRL.2005.v12.n6.a10, Math. Res. Lett. 12 (2005), 523–542. (2005) MR2189248DOI10.4310/MRL.2005.v12.n6.a10
  12. Kolář, M., 10.1093/imrn/rnq013, Internat. Math. Res. Notices 18 (2010), 3530–3548. (2010) Zbl1207.32032MR2725504DOI10.1093/imrn/rnq013
  13. Kolář, M., Kossovskiy, I., Zaitsev, D., Normal forms in Cauchy-Riemann geometry, Analysis and geometry in several complex variables, vol. 681, Contemp. Math., 2017, pp. 153–177. (2017) Zbl1362.32023MR3603888
  14. Kolář, M., Lamel, B., 10.1007/s12220-013-9465-y, J. Geom. Anal. 25 (2015), 1240–1281. (2015) Zbl1322.32029MR3319970DOI10.1007/s12220-013-9465-y
  15. Kolář, M., Meylan, F., Nonlinear CR automorphisms of Levi degenerate hypersurfaces and a new gap phenomenon, arXiv : 1703.07123 [CV]. 
  16. Kolář, M., Meylan, F., Chern-Moser operators and weighted jet determination problems, Geometric analysis of several complex variables and related topics, vol. 550, Contemp. Math., 2011, pp. 75–88. (2011) Zbl1232.32024MR2868555
  17. Kolář, M., Meylan, F., 10.1090/proc/13090, Proc. Amer. Math. Soc. 144 (2016), 4807–4818. (2016) Zbl1351.32057MR3544531DOI10.1090/proc/13090
  18. Kolář, M., Meylan, F., Zaitsev, D., 10.1016/j.aim.2014.06.017, Adv. Math. 263 (2014), 321–356. (2014) Zbl1294.32010MR3239141DOI10.1016/j.aim.2014.06.017
  19. Poincaré, H., 10.1007/BF03013518, Rend. Circ. Mat. Palermo 23 (1907), 185–220. (1907) DOI10.1007/BF03013518
  20. Vitushkin, A.G., 10.1070/RM1985v040n02ABEH003556, Russian Math. Surveys 40 (1985), 1–35. (1985) Zbl0588.32025MR0786085DOI10.1070/RM1985v040n02ABEH003556
  21. Webster, S.M., 10.1007/BF01421918, Math. Ann. 233 (1978), 97–102. (1978) Zbl0358.32013MR0486511DOI10.1007/BF01421918

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.