Infinitesimal CR automorphisms for a class of polynomial models
Archivum Mathematicum (2017)
- Volume: 053, Issue: 5, page 255-265
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topKolář, Martin, and Meylan, Francine. "Infinitesimal CR automorphisms for a class of polynomial models." Archivum Mathematicum 053.5 (2017): 255-265. <http://eudml.org/doc/294258>.
@article{Kolář2017,
abstract = {In this paper we study infinitesimal CR automorphisms of Levi degenerate hypersurfaces. We illustrate the recent general results of [18], [17], [15], on a class of concrete examples, polynomial models in $\mathbb \{C\}^3$ of the form $\Im \; w = \Re (P(z) \overline\{Q(z)\}) $, where $P$ and $Q$ are weighted homogeneous holomorphic polynomials in $z = (z_1, z_2)$. We classify such models according to their Lie algebra of infinitesimal CR automorphisms. We also give the first example of a non monomial model which admits a nonlinear rigid automorphism.},
author = {Kolář, Martin, Meylan, Francine},
journal = {Archivum Mathematicum},
keywords = {Levi degenerate hypersurfaces; finite multitype; polynomial models; infinitesimal CR automorphisms},
language = {eng},
number = {5},
pages = {255-265},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Infinitesimal CR automorphisms for a class of polynomial models},
url = {http://eudml.org/doc/294258},
volume = {053},
year = {2017},
}
TY - JOUR
AU - Kolář, Martin
AU - Meylan, Francine
TI - Infinitesimal CR automorphisms for a class of polynomial models
JO - Archivum Mathematicum
PY - 2017
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 053
IS - 5
SP - 255
EP - 265
AB - In this paper we study infinitesimal CR automorphisms of Levi degenerate hypersurfaces. We illustrate the recent general results of [18], [17], [15], on a class of concrete examples, polynomial models in $\mathbb {C}^3$ of the form $\Im \; w = \Re (P(z) \overline{Q(z)}) $, where $P$ and $Q$ are weighted homogeneous holomorphic polynomials in $z = (z_1, z_2)$. We classify such models according to their Lie algebra of infinitesimal CR automorphisms. We also give the first example of a non monomial model which admits a nonlinear rigid automorphism.
LA - eng
KW - Levi degenerate hypersurfaces; finite multitype; polynomial models; infinitesimal CR automorphisms
UR - http://eudml.org/doc/294258
ER -
References
top- Baouendi, M.S., Ebenfelt, P., Rothschild, L.P., 10.1090/S0273-0979-00-00863-6, Bull. Amer. Math. Soc. (N.S.) 37 (3) (2000), 309–336. (2000) MR1754643DOI10.1090/S0273-0979-00-00863-6
- Bedford, E., Pinchuk, S.I., Convex domains with noncompact groups of automorphisms, Mat. Sb. 185 (1994), 3–26. (1994) MR1275970
- Bloom, T., Graham, I., 10.1007/BF01425740, Invent. Math. 40 (3) (1977), 217–243. (1977) MR0589930DOI10.1007/BF01425740
- Cartan, E., 10.1007/BF02417822, Ann. Math. Pura Appl. 11 (1932), 17–90. (1932) MR1553196DOI10.1007/BF02417822
- Cartan, E., Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, II, Ann. Scuola Norm. Sup. Pisa 1 (1932), 333–354. (1932) MR1556687
- Catlin, D., Boundary invariants of pseudoconvex domains, Ann. of Math. (2) 120 (1984), 529–586. (1984) Zbl0583.32048MR0769163
- Chern, S. S., Moser, J., 10.1007/BF02392146, Acta Math. 133 (1974), 219–271. (1974) MR0425155DOI10.1007/BF02392146
- D’Angelo, J., Orders od contact, real hypersurfaces and applications, Ann. of Math. (2) 115 (1982), 615–637. (1982) MR0657241
- Kim, S.Y., Zaitsev, D., 10.1016/j.top.2004.11.004, Topology 44 (2005), 557–584. (2005) Zbl1079.32022MR2122216DOI10.1016/j.top.2004.11.004
- Kohn, J.J., 10.4310/jdg/1214430641, J. Differential Geom. 6 (1972), 523–542. (1972) MR0322365DOI10.4310/jdg/1214430641
- Kolář, M., 10.4310/MRL.2005.v12.n6.a10, Math. Res. Lett. 12 (2005), 523–542. (2005) MR2189248DOI10.4310/MRL.2005.v12.n6.a10
- Kolář, M., 10.1093/imrn/rnq013, Internat. Math. Res. Notices 18 (2010), 3530–3548. (2010) Zbl1207.32032MR2725504DOI10.1093/imrn/rnq013
- Kolář, M., Kossovskiy, I., Zaitsev, D., Normal forms in Cauchy-Riemann geometry, Analysis and geometry in several complex variables, vol. 681, Contemp. Math., 2017, pp. 153–177. (2017) Zbl1362.32023MR3603888
- Kolář, M., Lamel, B., 10.1007/s12220-013-9465-y, J. Geom. Anal. 25 (2015), 1240–1281. (2015) Zbl1322.32029MR3319970DOI10.1007/s12220-013-9465-y
- Kolář, M., Meylan, F., Nonlinear CR automorphisms of Levi degenerate hypersurfaces and a new gap phenomenon, arXiv : 1703.07123 [CV].
- Kolář, M., Meylan, F., Chern-Moser operators and weighted jet determination problems, Geometric analysis of several complex variables and related topics, vol. 550, Contemp. Math., 2011, pp. 75–88. (2011) Zbl1232.32024MR2868555
- Kolář, M., Meylan, F., 10.1090/proc/13090, Proc. Amer. Math. Soc. 144 (2016), 4807–4818. (2016) Zbl1351.32057MR3544531DOI10.1090/proc/13090
- Kolář, M., Meylan, F., Zaitsev, D., 10.1016/j.aim.2014.06.017, Adv. Math. 263 (2014), 321–356. (2014) Zbl1294.32010MR3239141DOI10.1016/j.aim.2014.06.017
- Poincaré, H., 10.1007/BF03013518, Rend. Circ. Mat. Palermo 23 (1907), 185–220. (1907) DOI10.1007/BF03013518
- Vitushkin, A.G., 10.1070/RM1985v040n02ABEH003556, Russian Math. Surveys 40 (1985), 1–35. (1985) Zbl0588.32025MR0786085DOI10.1070/RM1985v040n02ABEH003556
- Webster, S.M., 10.1007/BF01421918, Math. Ann. 233 (1978), 97–102. (1978) Zbl0358.32013MR0486511DOI10.1007/BF01421918
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.