Note on duality of weighted multi-parameter Triebel-Lizorkin spaces

Wei Ding; Jiao Chen; Yaoming Niu

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 3, page 763-779
  • ISSN: 0011-4642

Abstract

top
We study the duality theory of the weighted multi-parameter Triebel-Lizorkin spaces F ˙ p α , q ( ω ; n 1 × n 2 ) . This space has been introduced and the result ( F ˙ p α , q ( ω ; n 1 × n 2 ) ) * = CMO p - α , q ' ( ω ; n 1 × n 2 ) for 0 < p 1 has been proved in Ding, Zhu (2017). In this paper, for 1 < p < , 0 < q < we establish its dual space H ˙ p α , q ( ω ; n 1 × n 2 ) .

How to cite

top

Ding, Wei, Chen, Jiao, and Niu, Yaoming. "Note on duality of weighted multi-parameter Triebel-Lizorkin spaces." Czechoslovak Mathematical Journal 69.3 (2019): 763-779. <http://eudml.org/doc/294263>.

@article{Ding2019,
abstract = {We study the duality theory of the weighted multi-parameter Triebel-Lizorkin spaces $\dot\{F\}^\{\alpha ,q\}_\{p\}(\omega ;\mathbb \{R\}^\{n_\{1\}\}\times \mathbb \{R\}^\{n_\{2\}\})$. This space has been introduced and the result \[(\dot\{F\}^\{\alpha ,q\}\_\{p\}(\omega ;\mathbb \{R\}^\{n\_\{1\}\}\times \mathbb \{R\}^\{n\_\{2\}\}))^\{\ast \}= \{\rm CMO\}^\{-\alpha ,q^\{\prime \}\}\_\{p\}(\omega ;\mathbb \{R\}^\{n\_\{1\}\}\times \mathbb \{R\}^\{n\_\{2\}\})\] for $0<p\le 1$ has been proved in Ding, Zhu (2017). In this paper, for $1<p<\infty $, $0<q<\infty $ we establish its dual space $\dot\{H\}^\{\alpha ,q\}_\{p\}(\omega ;\mathbb \{R\}^\{n_\{1\}\}\times \mathbb \{R\}^\{n_\{2\}\})$.},
author = {Ding, Wei, Chen, Jiao, Niu, Yaoming},
journal = {Czechoslovak Mathematical Journal},
keywords = {Triebel-Lizorkin space; duality; weighted multi-parameter},
language = {eng},
number = {3},
pages = {763-779},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Note on duality of weighted multi-parameter Triebel-Lizorkin spaces},
url = {http://eudml.org/doc/294263},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Ding, Wei
AU - Chen, Jiao
AU - Niu, Yaoming
TI - Note on duality of weighted multi-parameter Triebel-Lizorkin spaces
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 763
EP - 779
AB - We study the duality theory of the weighted multi-parameter Triebel-Lizorkin spaces $\dot{F}^{\alpha ,q}_{p}(\omega ;\mathbb {R}^{n_{1}}\times \mathbb {R}^{n_{2}})$. This space has been introduced and the result \[(\dot{F}^{\alpha ,q}_{p}(\omega ;\mathbb {R}^{n_{1}}\times \mathbb {R}^{n_{2}}))^{\ast }= {\rm CMO}^{-\alpha ,q^{\prime }}_{p}(\omega ;\mathbb {R}^{n_{1}}\times \mathbb {R}^{n_{2}})\] for $0<p\le 1$ has been proved in Ding, Zhu (2017). In this paper, for $1<p<\infty $, $0<q<\infty $ we establish its dual space $\dot{H}^{\alpha ,q}_{p}(\omega ;\mathbb {R}^{n_{1}}\times \mathbb {R}^{n_{2}})$.
LA - eng
KW - Triebel-Lizorkin space; duality; weighted multi-parameter
UR - http://eudml.org/doc/294263
ER -

References

top
  1. Bownik, M., 10.1007/s00209-007-0216-2, Math. Z. 259 (2008), 131-169. (2008) Zbl1213.42062MR2375620DOI10.1007/s00209-007-0216-2
  2. Carleson, L., A counterexample for measures bounded on H p for the bidisc, Mittag-Leffler Report. No. 7 (1974). (1974) MR1555104
  3. Chang, S.-Y. A., Fefferman, R., 10.2307/1971324, Ann. Math. (2) 112 (1980), 179-201. (1980) Zbl0451.42014MR0584078DOI10.2307/1971324
  4. Chang, S.-Y. A., Fefferman, R., 10.2307/2374150, Am. J. Math. 104 (1982), 455-468. (1982) Zbl0513.42019MR0658542DOI10.2307/2374150
  5. Chang, S.-Y. A., Fefferman, R., 10.1090/S0273-0979-1985-15291-7, Bull. Am. Math. Soc., New Ser. 12 (1985), 1-43. (1985) Zbl0557.42007MR0766959DOI10.1090/S0273-0979-1985-15291-7
  6. Cruz-Uribe, D., Martell, J. M., Pérez, C., 10.1016/j.aim.2011.08.013, Adv. Math. 229 (2012), 408-441. (2012) Zbl1236.42010MR2854179DOI10.1016/j.aim.2011.08.013
  7. Ding, W., Lu, G., 10.1090/tran/6576, Trans. Am. Math. Soc. 368 (2016), 7119-7152. (2016) Zbl1338.42025MR3471087DOI10.1090/tran/6576
  8. Ding, W., Zhu, Y., 10.1016/S0252-9602(17)30059-0, Acta Math. Sci., Ser. B, Engl. Ed. 37 (2017), 1083-1104. (2017) Zbl06873879MR3657209DOI10.1016/S0252-9602(17)30059-0
  9. Fan, X., He, J., Li, B., Yang, D., 10.1007/s11425-016-9024-2, Sci. China, Math. 60 (2017), 2093-2154. (2017) Zbl1395.42058MR3714569DOI10.1007/s11425-016-9024-2
  10. Fefferman, R., 10.2307/2374188, Am. J. Math. 103 (1981), 33-40. (1981) Zbl0475.42019MR0601461DOI10.2307/2374188
  11. Fefferman, R., 10.1073/pnas.83.4.840, Proc. Natl. Acad. Sci. USA 83 (1986), 840-843. (1986) Zbl0602.42023MR0828217DOI10.1073/pnas.83.4.840
  12. Fefferman, R., 10.2307/1971346, Ann. Math. (2) 126 (1987), 109-130. (1987) Zbl0644.42017MR0898053DOI10.2307/1971346
  13. Fefferman, R., Stein, E. M., 10.1016/S0001-8708(82)80001-7, Adv. Math. 45 (1982), 117-143. (1982) Zbl0517.42024MR0664621DOI10.1016/S0001-8708(82)80001-7
  14. Ferguson, S. H., Lacey, M. T., 10.1007/BF02392840, Acta Math. 189 (2002), 143-160. (2002) Zbl1039.47022MR1961195DOI10.1007/BF02392840
  15. Frazier, M., Jawerth, B., 10.1016/0022-1236(90)90137-A, J. Funct. Anal. 93 (1990), 34-170. (1990) Zbl0716.46031MR1070037DOI10.1016/0022-1236(90)90137-A
  16. Grafakos, L., Classical and Modern Fourier Analysis, Pearson/Prentice Hall, Upper Saddle River (2004). (2004) Zbl1148.42001MR2449250
  17. Gundy, R. F., Stein, E. M., 10.1073/pnas.76.3.1026, Proc. Natl. Acad. Sci. USA 76 (1979), 1026-1029. (1979) Zbl0405.32002MR0524328DOI10.1073/pnas.76.3.1026
  18. Han, Y., Lee, M.-Y., Lin, C.-C., Lin, Y.-C., 10.1016/j.jfa.2009.10.022, J. Funct. Anal. 258 (2010), 2834-2861. (2010) Zbl1197.42006MR2593346DOI10.1016/j.jfa.2009.10.022
  19. Han, Y., Li, J., Lu, G., 10.2422/2036-2145.2010.4.01, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 9 (2010), 645-685. (2010) Zbl1213.42073MR2789471DOI10.2422/2036-2145.2010.4.01
  20. Han, Y., Li, J., Lu, G., 10.1090/S0002-9947-2012-05638-8, Trans. Am. Math. Soc. 365 (2013), 319-360. (2013) Zbl1275.42035MR2984061DOI10.1090/S0002-9947-2012-05638-8
  21. Han, Y., Lu, G., Ruan, Z., 10.1016/j.jfa.2012.12.006, J. Funct. Anal. 264 (2013), 1238-1268. (2013) Zbl1268.42024MR3010020DOI10.1016/j.jfa.2012.12.006
  22. Han, Y., Lu, G., Ruan, Z., 10.1007/s12220-013-9421-x, J. Geom. Anal. 24 (2014), 2186-2228. (2014) Zbl1302.42024MR3261735DOI10.1007/s12220-013-9421-x
  23. Han, Y., Lin, C., Lu, G., Ruan, Z., Sawyer, E. T., 10.4171/RMI/751, Rev. Mat. Iberoam. 29 (2013), 1127-1157. (2013) Zbl1291.42018MR3148598DOI10.4171/RMI/751
  24. Journé, J.-L., 10.4171/RMI/15, Rev. Mat. Iberoam. 1 (1985), 55-91. (1985) Zbl0634.42015MR0836284DOI10.4171/RMI/15
  25. Journé, J.-L., 10.5802/aif.1125, Ann. Inst. Fourier 38 (1988), 111-132. (1988) Zbl0638.47026MR0949001DOI10.5802/aif.1125
  26. Li, B., Bownik, M., Yang, D., Yuan, W., 10.1007/s11117-011-0119-7, Positivity 16 (2012), 213-244. (2012) Zbl1260.46025MR2929088DOI10.1007/s11117-011-0119-7
  27. Li, B. D., Fan, X., Fu, Z. W., Yang, D., 10.1007/s10114-016-4741-y, Acta Math. Sin., Engl. Ser. 32 (2016), 1391-1414. (2016) Zbl1359.42010MR3557405DOI10.1007/s10114-016-4741-y
  28. Liu, J., Yang, D., Yuan, W., 10.1007/s11425-016-5157-y, Sci. China, Math. 59 (2016), 1669-1720. (2016) Zbl1352.42028MR3536030DOI10.1007/s11425-016-5157-y
  29. Liu, J., Yang, D., Yuan, W., 10.1016/j.jmaa.2017.07.003, J. Math. Anal. Appl. 456 (2017), 356-393. (2017) Zbl1373.42028MR3680972DOI10.1016/j.jmaa.2017.07.003
  30. Liu, J., Yang, D., Yuan, W., 10.1016/S0252-9602(17)30115-7, Acta Math. Sci., Ser. B, Engl. Ed. 38 (2018), 1-33. (2018) Zbl06881863MR3733274DOI10.1016/S0252-9602(17)30115-7
  31. Lu, G. Z., Zhu, Y. P., 10.1007/s10114-012-1402-7, Acta Math. Sin., Engl. Ser. 29 (2013), 39-52. (2013) Zbl1261.42030MR3001008DOI10.1007/s10114-012-1402-7
  32. Pipher, J., 10.1215/S0012-7094-86-05337-8, Duke Math. J. 53 (1986), 683-690. (1986) Zbl0645.42018MR0860666DOI10.1215/S0012-7094-86-05337-8
  33. Pisier, G., 10.1007/BF01450929, Math. Ann. 276 (1986), 105-136. (1986) Zbl0619.47016MR0863711DOI10.1007/BF01450929
  34. Ruan, Z., 10.1016/j.jmaa.2010.02.010, J. Math. Anal. Appl. 367 (2010), 625-639. (2010) Zbl1198.42015MR2607286DOI10.1016/j.jmaa.2010.02.010
  35. Triebel, H., 10.1007/978-3-0346-0416-1, Monographs in Mathematics 78, Birkhäuser, Basel (1983). (1983) Zbl0546.46027MR0781540DOI10.1007/978-3-0346-0416-1
  36. Verbitsky, I. E., 10.2140/pjm.1996.176.529, Pac. J. Math. 176 (1996), 529-556. (1996) Zbl0865.42009MR1435004DOI10.2140/pjm.1996.176.529
  37. Yuan, W., Sickel, W., Yang, D., 10.1007/978-3-642-14606-0, Lecture Notes in Mathematics 2005, Springer, Berlin (2010). (2010) Zbl1207.46002MR2683024DOI10.1007/978-3-642-14606-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.