Centered weighted composition operators via measure theory
Mohammad Reza Jabbarzadeh; Mehri Jafari Bakhshkandi
Mathematica Bohemica (2018)
- Volume: 143, Issue: 2, page 123-134
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topJabbarzadeh, Mohammad Reza, and Jafari Bakhshkandi, Mehri. "Centered weighted composition operators via measure theory." Mathematica Bohemica 143.2 (2018): 123-134. <http://eudml.org/doc/294264>.
@article{Jabbarzadeh2018,
abstract = {We describe the centered weighted composition operators on $L^2(\Sigma )$ in terms of their defining symbols. Our characterizations extend Embry-Wardrop-Lambert’s theorem on centered composition operators.},
author = {Jabbarzadeh, Mohammad Reza, Jafari Bakhshkandi, Mehri},
journal = {Mathematica Bohemica},
keywords = {Aluthge transform; Moore-Penrose inverse; weighted composition operator; conditional expectation; centered operator},
language = {eng},
number = {2},
pages = {123-134},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Centered weighted composition operators via measure theory},
url = {http://eudml.org/doc/294264},
volume = {143},
year = {2018},
}
TY - JOUR
AU - Jabbarzadeh, Mohammad Reza
AU - Jafari Bakhshkandi, Mehri
TI - Centered weighted composition operators via measure theory
JO - Mathematica Bohemica
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 143
IS - 2
SP - 123
EP - 134
AB - We describe the centered weighted composition operators on $L^2(\Sigma )$ in terms of their defining symbols. Our characterizations extend Embry-Wardrop-Lambert’s theorem on centered composition operators.
LA - eng
KW - Aluthge transform; Moore-Penrose inverse; weighted composition operator; conditional expectation; centered operator
UR - http://eudml.org/doc/294264
ER -
References
top- Caradus, S. R., Generalized Inverses and Operator Theory, Queen's Pap. Pure Appl. Math. 50. Queen's University, Kingston, Ontario (1978). (1978) Zbl0434.47003MR0523736
- Embry-Wardrop, M., Lambert, A., Measurable transformations and centred composition operators, Proc. R. Ir. Acad., Sect. A 90 (1990), 165-172. (1990) Zbl0753.47011MR1150455
- Embry-Wardrop, M., Lambert, A., Subnormality for the adjoint of a composition operator on , J. Oper. Theory 25 (1991), 309-318. (1991) Zbl0795.47022MR1203036
- Giselsson, O., Half-centered operators, Online https://arxiv.org/pdf/1602.05081v1.pdf 44 pages.
- Hoover, T., Lambert, A., Quinn, J., 10.4064/sm-72-3-225-236, Stud. Math. 72 (1982), 225-235. (1982) Zbl0503.47007MR0671398DOI10.4064/sm-72-3-225-236
- Lambert, A., 10.1112/blms/18.4.395, Bull. Lond. Math. Soc. 18 (1986), 395-400. (1986) Zbl0624.47014MR0838810DOI10.1112/blms/18.4.395
- Morrel, B. B., Muhly, P. S., 10.4064/sm-51-3-251-263, Studia Math. 51 (1974), 251-263. (1974) Zbl0258.47019MR0355658DOI10.4064/sm-51-3-251-263
- Singh, R. K., Komal, B. S., 10.1017/S0004972700008303, Bull. Aust. Math. Soc. 18 (1978), 439-446. (1978) Zbl0377.47029MR0508815DOI10.1017/S0004972700008303
- Singh, R. K., Manhas, J. S., 10.1016/s0304-0208(08)x7086-0, North-Holland Mathematics Studies 179. North-Holland Publishing, Amsterdam (1993). (1993) Zbl0788.47021MR1246562DOI10.1016/s0304-0208(08)x7086-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.