Polynomial chaos in evaluating failure probability: A comparative study
Eliška Janouchová; Jan Sýkora; Anna Kučerová
Applications of Mathematics (2018)
- Volume: 63, Issue: 6, page 713-737
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topJanouchová, Eliška, Sýkora, Jan, and Kučerová, Anna. "Polynomial chaos in evaluating failure probability: A comparative study." Applications of Mathematics 63.6 (2018): 713-737. <http://eudml.org/doc/294272>.
@article{Janouchová2018,
abstract = {Recent developments in the field of stochastic mechanics and particularly regarding the stochastic finite element method allow to model uncertain behaviours for more complex engineering structures. In reliability analysis, polynomial chaos expansion is a useful tool because it helps to avoid thousands of time-consuming finite element model simulations for structures with uncertain parameters. The aim of this paper is to review and compare available techniques for both the construction of polynomial chaos and its use in computing failure probability. In particular, we compare results for the stochastic Galerkin method, stochastic collocation, and the regression method based on Latin hypercube sampling with predictions obtained by crude Monte Carlo sampling. As an illustrative engineering example, we consider a simple frame structure with uncertain parameters in loading and geometry with prescribed distributions defined by realistic histograms.},
author = {Janouchová, Eliška, Sýkora, Jan, Kučerová, Anna},
journal = {Applications of Mathematics},
keywords = {uncertainty quantification; reliability analysis; probability of failure; safety margin; polynomial chaos expansion; regression method; stochastic collocation method; stochastic Galerkin method; Monte Carlo method},
language = {eng},
number = {6},
pages = {713-737},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Polynomial chaos in evaluating failure probability: A comparative study},
url = {http://eudml.org/doc/294272},
volume = {63},
year = {2018},
}
TY - JOUR
AU - Janouchová, Eliška
AU - Sýkora, Jan
AU - Kučerová, Anna
TI - Polynomial chaos in evaluating failure probability: A comparative study
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 6
SP - 713
EP - 737
AB - Recent developments in the field of stochastic mechanics and particularly regarding the stochastic finite element method allow to model uncertain behaviours for more complex engineering structures. In reliability analysis, polynomial chaos expansion is a useful tool because it helps to avoid thousands of time-consuming finite element model simulations for structures with uncertain parameters. The aim of this paper is to review and compare available techniques for both the construction of polynomial chaos and its use in computing failure probability. In particular, we compare results for the stochastic Galerkin method, stochastic collocation, and the regression method based on Latin hypercube sampling with predictions obtained by crude Monte Carlo sampling. As an illustrative engineering example, we consider a simple frame structure with uncertain parameters in loading and geometry with prescribed distributions defined by realistic histograms.
LA - eng
KW - uncertainty quantification; reliability analysis; probability of failure; safety margin; polynomial chaos expansion; regression method; stochastic collocation method; stochastic Galerkin method; Monte Carlo method
UR - http://eudml.org/doc/294272
ER -
References
top- Augustin, F., Gilg, A., Paffrath, M., Rentrop, P., Villegas, M., Wever, U., 10.1186/2190-5983-3-2, J. Math. Ind. 3 (2013), 24 pages. (2013) Zbl1275.65004MR3049138DOI10.1186/2190-5983-3-2
- Babuška, I., Nobile, F., Tempone, R., 10.1137/050645142, SIAM J. Numer. Anal. 45 (2007), 1005-1034. (2007) Zbl1151.65008MR2318799DOI10.1137/050645142
- Babuška, I., Tempone, R., Zouraris, G. E., 10.1137/S0036142902418680, SIAM J. Numer. Anal. 42 (2004), 800-825. (2004) Zbl1080.65003MR2084236DOI10.1137/S0036142902418680
- Blatman, G., Sudret, B., 10.1016/j.probengmech.2009.10.003, Probabilistic Engineering Mechanics 25 (2010), 183-197. (2010) DOI10.1016/j.probengmech.2009.10.003
- Blatman, G., Sudret, B., 10.1016/j.jcp.2010.12.021, J. Comput. Phys. 230 (2011), 2345-2367. (2011) Zbl1210.65019MR2764550DOI10.1016/j.jcp.2010.12.021
- Cheng, H., Sandu, A., 10.1016/j.matcom.2009.05.002, Math. Comput. Simul. 79 (2009), 3278-3295. (2009) Zbl1169.65005MR2549773DOI10.1016/j.matcom.2009.05.002
- Choi, S.-K., Grandhi, R. V., Canfield, R. A., Pettit, C. L., 10.2514/1.2220, AIAA J. 42 (2004), 1191-1198. (2004) DOI10.2514/1.2220
- Ditlevsen, O., Madsen, H. O., Structural Reliability Methods, John Wiley & Sons, Chichester (1996). (1996)
- Eigel, M., Gittelson, C. J., Schwab, C., Zander, E., 10.1016/j.cma.2013.11.015, Comput. Methods Appl. Mech. Eng. 270 (2014), 247-269. (2014) Zbl1296.65157MR3154028DOI10.1016/j.cma.2013.11.015
- Eldred, M. S., Burkardt, J., 10.2514/6.2009-976, The 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando AIAA 2009-976 (2009), 20. (2009) DOI10.2514/6.2009-976
- Elman, H. C., Miller, C. W., Phipps, E. T., Tuminaro, R. S., 10.1615/int.j.uncertaintyquantification.v1.i1.20, Int. J. Uncertain. Quantif. 1 (2011), 19-33. (2011) Zbl1229.65026MR2823001DOI10.1615/int.j.uncertaintyquantification.v1.i1.20
- Fülöp, A., Iványi, M., Safety of a column in a frame, Probabilistic Assessment of Structures Using Monte Carlo Simulation: Background, Exercises and Software P. Marek et al. Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Praha, CD, Chapt. 8.10 (2003). (2003)
- Ghanem, R. G., Spanos, P. D., 10.1007/978-1-4612-3094-6, Dover Civil and Mechanical Engineering, Dover Publications (2012). (2012) Zbl0722.73080MR1083354DOI10.1007/978-1-4612-3094-6
- Gutiérrez, M., Krenk, S., 10.1002/0470091355.ecm044, Encyclopedia of Computational Mechanics E. Stein et al. John Wiley & Sons, Chichester (2004). (2004) Zbl1190.76001MR2288276DOI10.1002/0470091355.ecm044
- Heiss, F., Winschel, V., 10.1016/j.jeconom.2007.12.004, J. Econom. 144 (2008), 62-80. (2008) Zbl06592098MR2439922DOI10.1016/j.jeconom.2007.12.004
- Hosder, S., Walters, R. W., Balch, M., 10.2514/6.2007-1939, The 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu AIAA 2007-1939 (2007), 16. (2007) DOI10.2514/6.2007-1939
- Hu, C., Youn, B. D., 10.1007/s00158-010-0568-9, Struct. Multidiscip. Optim. 43 (2011), 419-442. (2011) Zbl1274.74271MR2774576DOI10.1007/s00158-010-0568-9
- Janouchová, E., Kučerová, A., 10.1016/j.compstruc.2013.04.009, Comput. Struct. 124 (2013), 47-60. (2013) DOI10.1016/j.compstruc.2013.04.009
- Janouchová, E., Kučerová, A., Sýkora, J., 10.4203/ccp.109.9, Y. Tsompanakis et al. Proceedings of the Fourth International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering Civil-Comp Press, Stirlingshire (2015), Paper 9. DOI10.4203/ccp.109.9
- Li, J., Li, J., Xiu, D., 10.1016/j.jcp.2011.08.008, J. Comput. Phys. 230 (2011), 8683-8697. (2011) Zbl1370.65005MR2845013DOI10.1016/j.jcp.2011.08.008
- Li, J., Xiu, D., 10.1016/j.jcp.2010.08.022, J. Comput. Phys. 229 (2010), 8966-8980. (2010) Zbl1204.65010MR2725383DOI10.1016/j.jcp.2010.08.022
- Ma, X., Zabaras, N., 10.1016/j.jcp.2009.01.006, J. Comput. Phys. 228 (2009), 3084-3113. (2009) Zbl1161.65006MR2509309DOI10.1016/j.jcp.2009.01.006
- Matthies, H. G., 10.1002/0470091355.ecm071, Encyclopedia of Computational Mechanics E. Stein et al. John Wiley & Sons, Chichester (2007). (2007) Zbl1190.76001MR2288276DOI10.1002/0470091355.ecm071
- Matthies, H. G., Keese, A., 10.1016/j.cma.2004.05.027, Comput. Methods Appl. Mech. Eng. 194 (2005), 1295-1331. (2005) Zbl1088.65002MR2121216DOI10.1016/j.cma.2004.05.027
- Najm, H. N., 10.1146/annurev.fluid.010908.165248, Annual Review of Fluid Mechanics 41 S. H. Davis et al. Annual Reviews, Palo Alto (2009), 35-52. (2009) Zbl1168.76041MR2512381DOI10.1146/annurev.fluid.010908.165248
- Nobile, F., Tempone, R., Webster, C. G., 10.1137/060663660, SIAM J. Numer. Anal. 46 (2008), 2309-2345. (2008) Zbl1176.65137MR2421037DOI10.1137/060663660
- Paffrath, M., Wever, U., 10.1016/j.jcp.2007.04.011, J. Comput. Phys. 226 (2007), 263-281. (2007) Zbl1124.65011MR2356359DOI10.1016/j.jcp.2007.04.011
- Pettersson, M. P., Iaccarino, G., Nordström, J., 10.1007/978-3-319-10714-1_3, Polynomial Chaos Methods for Hyperbolic Partial Differential Equations. Numerical Techniques for Fluid Dynamics Problems in the Presence of Uncertainties Mathematical Engineering, Springer, Cham (2015), 23-29. (2015) Zbl1325.76004MR3328389DOI10.1007/978-3-319-10714-1_3
- Pulch, R., 10.1016/j.cam.2013.10.046, J. Comput. Appl. Math. 262 (2014), 281-291. (2014) Zbl1301.65090MR3162322DOI10.1016/j.cam.2013.10.046
- Stefanou, G., 10.1016/j.cma.2008.11.007, Comput. Methods Appl. Mech. Eng. 198 (2009), 1031-1051. (2009) Zbl1229.74140DOI10.1016/j.cma.2008.11.007
- Wiener, N., 10.2307/2371268, Am. J. Math. 60 (1938), 897-936. (1938) Zbl0019.35406MR1507356DOI10.2307/2371268
- Xiu, D., Fast numerical methods for stochastic computations: A review, Commun. Comput. Phys. 5 (2009), 242-272. (2009) Zbl1364.65019MR2513686
- Xiu, D., 10.2307/j.ctv7h0skv, Princeton University Press, Princeton (2010). (2010) Zbl1210.65002MR2723020DOI10.2307/j.ctv7h0skv
- Xiu, D., Hesthaven, J. S., 10.1137/040615201, SIAM J. Sci. Comput. 27 (2005), 1118-1139. (2005) Zbl1091.65006MR2199923DOI10.1137/040615201
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.