Polynomial chaos in evaluating failure probability: A comparative study

Eliška Janouchová; Jan Sýkora; Anna Kučerová

Applications of Mathematics (2018)

  • Volume: 63, Issue: 6, page 713-737
  • ISSN: 0862-7940

Abstract

top
Recent developments in the field of stochastic mechanics and particularly regarding the stochastic finite element method allow to model uncertain behaviours for more complex engineering structures. In reliability analysis, polynomial chaos expansion is a useful tool because it helps to avoid thousands of time-consuming finite element model simulations for structures with uncertain parameters. The aim of this paper is to review and compare available techniques for both the construction of polynomial chaos and its use in computing failure probability. In particular, we compare results for the stochastic Galerkin method, stochastic collocation, and the regression method based on Latin hypercube sampling with predictions obtained by crude Monte Carlo sampling. As an illustrative engineering example, we consider a simple frame structure with uncertain parameters in loading and geometry with prescribed distributions defined by realistic histograms.

How to cite

top

Janouchová, Eliška, Sýkora, Jan, and Kučerová, Anna. "Polynomial chaos in evaluating failure probability: A comparative study." Applications of Mathematics 63.6 (2018): 713-737. <http://eudml.org/doc/294272>.

@article{Janouchová2018,
abstract = {Recent developments in the field of stochastic mechanics and particularly regarding the stochastic finite element method allow to model uncertain behaviours for more complex engineering structures. In reliability analysis, polynomial chaos expansion is a useful tool because it helps to avoid thousands of time-consuming finite element model simulations for structures with uncertain parameters. The aim of this paper is to review and compare available techniques for both the construction of polynomial chaos and its use in computing failure probability. In particular, we compare results for the stochastic Galerkin method, stochastic collocation, and the regression method based on Latin hypercube sampling with predictions obtained by crude Monte Carlo sampling. As an illustrative engineering example, we consider a simple frame structure with uncertain parameters in loading and geometry with prescribed distributions defined by realistic histograms.},
author = {Janouchová, Eliška, Sýkora, Jan, Kučerová, Anna},
journal = {Applications of Mathematics},
keywords = {uncertainty quantification; reliability analysis; probability of failure; safety margin; polynomial chaos expansion; regression method; stochastic collocation method; stochastic Galerkin method; Monte Carlo method},
language = {eng},
number = {6},
pages = {713-737},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Polynomial chaos in evaluating failure probability: A comparative study},
url = {http://eudml.org/doc/294272},
volume = {63},
year = {2018},
}

TY - JOUR
AU - Janouchová, Eliška
AU - Sýkora, Jan
AU - Kučerová, Anna
TI - Polynomial chaos in evaluating failure probability: A comparative study
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 6
SP - 713
EP - 737
AB - Recent developments in the field of stochastic mechanics and particularly regarding the stochastic finite element method allow to model uncertain behaviours for more complex engineering structures. In reliability analysis, polynomial chaos expansion is a useful tool because it helps to avoid thousands of time-consuming finite element model simulations for structures with uncertain parameters. The aim of this paper is to review and compare available techniques for both the construction of polynomial chaos and its use in computing failure probability. In particular, we compare results for the stochastic Galerkin method, stochastic collocation, and the regression method based on Latin hypercube sampling with predictions obtained by crude Monte Carlo sampling. As an illustrative engineering example, we consider a simple frame structure with uncertain parameters in loading and geometry with prescribed distributions defined by realistic histograms.
LA - eng
KW - uncertainty quantification; reliability analysis; probability of failure; safety margin; polynomial chaos expansion; regression method; stochastic collocation method; stochastic Galerkin method; Monte Carlo method
UR - http://eudml.org/doc/294272
ER -

References

top
  1. Augustin, F., Gilg, A., Paffrath, M., Rentrop, P., Villegas, M., Wever, U., 10.1186/2190-5983-3-2, J. Math. Ind. 3 (2013), 24 pages. (2013) Zbl1275.65004MR3049138DOI10.1186/2190-5983-3-2
  2. Babuška, I., Nobile, F., Tempone, R., 10.1137/050645142, SIAM J. Numer. Anal. 45 (2007), 1005-1034. (2007) Zbl1151.65008MR2318799DOI10.1137/050645142
  3. Babuška, I., Tempone, R., Zouraris, G. E., 10.1137/S0036142902418680, SIAM J. Numer. Anal. 42 (2004), 800-825. (2004) Zbl1080.65003MR2084236DOI10.1137/S0036142902418680
  4. Blatman, G., Sudret, B., 10.1016/j.probengmech.2009.10.003, Probabilistic Engineering Mechanics 25 (2010), 183-197. (2010) DOI10.1016/j.probengmech.2009.10.003
  5. Blatman, G., Sudret, B., 10.1016/j.jcp.2010.12.021, J. Comput. Phys. 230 (2011), 2345-2367. (2011) Zbl1210.65019MR2764550DOI10.1016/j.jcp.2010.12.021
  6. Cheng, H., Sandu, A., 10.1016/j.matcom.2009.05.002, Math. Comput. Simul. 79 (2009), 3278-3295. (2009) Zbl1169.65005MR2549773DOI10.1016/j.matcom.2009.05.002
  7. Choi, S.-K., Grandhi, R. V., Canfield, R. A., Pettit, C. L., 10.2514/1.2220, AIAA J. 42 (2004), 1191-1198. (2004) DOI10.2514/1.2220
  8. Ditlevsen, O., Madsen, H. O., Structural Reliability Methods, John Wiley & Sons, Chichester (1996). (1996) 
  9. Eigel, M., Gittelson, C. J., Schwab, C., Zander, E., 10.1016/j.cma.2013.11.015, Comput. Methods Appl. Mech. Eng. 270 (2014), 247-269. (2014) Zbl1296.65157MR3154028DOI10.1016/j.cma.2013.11.015
  10. Eldred, M. S., Burkardt, J., 10.2514/6.2009-976, The 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando AIAA 2009-976 (2009), 20. (2009) DOI10.2514/6.2009-976
  11. Elman, H. C., Miller, C. W., Phipps, E. T., Tuminaro, R. S., 10.1615/int.j.uncertaintyquantification.v1.i1.20, Int. J. Uncertain. Quantif. 1 (2011), 19-33. (2011) Zbl1229.65026MR2823001DOI10.1615/int.j.uncertaintyquantification.v1.i1.20
  12. Fülöp, A., Iványi, M., Safety of a column in a frame, Probabilistic Assessment of Structures Using Monte Carlo Simulation: Background, Exercises and Software P. Marek et al. Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Praha, CD, Chapt. 8.10 (2003). (2003) 
  13. Ghanem, R. G., Spanos, P. D., 10.1007/978-1-4612-3094-6, Dover Civil and Mechanical Engineering, Dover Publications (2012). (2012) Zbl0722.73080MR1083354DOI10.1007/978-1-4612-3094-6
  14. Gutiérrez, M., Krenk, S., 10.1002/0470091355.ecm044, Encyclopedia of Computational Mechanics E. Stein et al. John Wiley & Sons, Chichester (2004). (2004) Zbl1190.76001MR2288276DOI10.1002/0470091355.ecm044
  15. Heiss, F., Winschel, V., 10.1016/j.jeconom.2007.12.004, J. Econom. 144 (2008), 62-80. (2008) Zbl06592098MR2439922DOI10.1016/j.jeconom.2007.12.004
  16. Hosder, S., Walters, R. W., Balch, M., 10.2514/6.2007-1939, The 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu AIAA 2007-1939 (2007), 16. (2007) DOI10.2514/6.2007-1939
  17. Hu, C., Youn, B. D., 10.1007/s00158-010-0568-9, Struct. Multidiscip. Optim. 43 (2011), 419-442. (2011) Zbl1274.74271MR2774576DOI10.1007/s00158-010-0568-9
  18. Janouchová, E., Kučerová, A., 10.1016/j.compstruc.2013.04.009, Comput. Struct. 124 (2013), 47-60. (2013) DOI10.1016/j.compstruc.2013.04.009
  19. Janouchová, E., Kučerová, A., Sýkora, J., 10.4203/ccp.109.9, Y. Tsompanakis et al. Proceedings of the Fourth International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering Civil-Comp Press, Stirlingshire (2015), Paper 9. DOI10.4203/ccp.109.9
  20. Li, J., Li, J., Xiu, D., 10.1016/j.jcp.2011.08.008, J. Comput. Phys. 230 (2011), 8683-8697. (2011) Zbl1370.65005MR2845013DOI10.1016/j.jcp.2011.08.008
  21. Li, J., Xiu, D., 10.1016/j.jcp.2010.08.022, J. Comput. Phys. 229 (2010), 8966-8980. (2010) Zbl1204.65010MR2725383DOI10.1016/j.jcp.2010.08.022
  22. Ma, X., Zabaras, N., 10.1016/j.jcp.2009.01.006, J. Comput. Phys. 228 (2009), 3084-3113. (2009) Zbl1161.65006MR2509309DOI10.1016/j.jcp.2009.01.006
  23. Matthies, H. G., 10.1002/0470091355.ecm071, Encyclopedia of Computational Mechanics E. Stein et al. John Wiley & Sons, Chichester (2007). (2007) Zbl1190.76001MR2288276DOI10.1002/0470091355.ecm071
  24. Matthies, H. G., Keese, A., 10.1016/j.cma.2004.05.027, Comput. Methods Appl. Mech. Eng. 194 (2005), 1295-1331. (2005) Zbl1088.65002MR2121216DOI10.1016/j.cma.2004.05.027
  25. Najm, H. N., 10.1146/annurev.fluid.010908.165248, Annual Review of Fluid Mechanics 41 S. H. Davis et al. Annual Reviews, Palo Alto (2009), 35-52. (2009) Zbl1168.76041MR2512381DOI10.1146/annurev.fluid.010908.165248
  26. Nobile, F., Tempone, R., Webster, C. G., 10.1137/060663660, SIAM J. Numer. Anal. 46 (2008), 2309-2345. (2008) Zbl1176.65137MR2421037DOI10.1137/060663660
  27. Paffrath, M., Wever, U., 10.1016/j.jcp.2007.04.011, J. Comput. Phys. 226 (2007), 263-281. (2007) Zbl1124.65011MR2356359DOI10.1016/j.jcp.2007.04.011
  28. Pettersson, M. P., Iaccarino, G., Nordström, J., 10.1007/978-3-319-10714-1_3, Polynomial Chaos Methods for Hyperbolic Partial Differential Equations. Numerical Techniques for Fluid Dynamics Problems in the Presence of Uncertainties Mathematical Engineering, Springer, Cham (2015), 23-29. (2015) Zbl1325.76004MR3328389DOI10.1007/978-3-319-10714-1_3
  29. Pulch, R., 10.1016/j.cam.2013.10.046, J. Comput. Appl. Math. 262 (2014), 281-291. (2014) Zbl1301.65090MR3162322DOI10.1016/j.cam.2013.10.046
  30. Stefanou, G., 10.1016/j.cma.2008.11.007, Comput. Methods Appl. Mech. Eng. 198 (2009), 1031-1051. (2009) Zbl1229.74140DOI10.1016/j.cma.2008.11.007
  31. Wiener, N., 10.2307/2371268, Am. J. Math. 60 (1938), 897-936. (1938) Zbl0019.35406MR1507356DOI10.2307/2371268
  32. Xiu, D., Fast numerical methods for stochastic computations: A review, Commun. Comput. Phys. 5 (2009), 242-272. (2009) Zbl1364.65019MR2513686
  33. Xiu, D., 10.2307/j.ctv7h0skv, Princeton University Press, Princeton (2010). (2010) Zbl1210.65002MR2723020DOI10.2307/j.ctv7h0skv
  34. Xiu, D., Hesthaven, J. S., 10.1137/040615201, SIAM J. Sci. Comput. 27 (2005), 1118-1139. (2005) Zbl1091.65006MR2199923DOI10.1137/040615201

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.