The duality of Auslander-Reiten quiver of path algebras
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 4, page 925-943
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHou, Bo, and Yang, Shilin. "The duality of Auslander-Reiten quiver of path algebras." Czechoslovak Mathematical Journal 69.4 (2019): 925-943. <http://eudml.org/doc/294277>.
@article{Hou2019,
abstract = {Let $Q$ be a finite union of Dynkin quivers, $G\subseteq \{\rm Aut\}(\mathbb \{k\}\{Q\})$ a finite abelian group, $\widehat\{Q\}$ the generalized McKay quiver of $(Q, G)$ and $\Gamma _\{Q\}$ the Auslander-Reiten quiver of $\mathbb \{k\}Q$. Then $G$ acts functorially on the quiver $\Gamma _\{Q\}$. We show that the Auslander-Reiten quiver of $\mathbb \{k\}\widehat\{Q\}$ coincides with the generalized McKay quiver of $(\Gamma _\{Q\}, G)$.},
author = {Hou, Bo, Yang, Shilin},
journal = {Czechoslovak Mathematical Journal},
keywords = {Auslander-Reiten quiver; generalized McKay quiver; duality},
language = {eng},
number = {4},
pages = {925-943},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The duality of Auslander-Reiten quiver of path algebras},
url = {http://eudml.org/doc/294277},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Hou, Bo
AU - Yang, Shilin
TI - The duality of Auslander-Reiten quiver of path algebras
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 925
EP - 943
AB - Let $Q$ be a finite union of Dynkin quivers, $G\subseteq {\rm Aut}(\mathbb {k}{Q})$ a finite abelian group, $\widehat{Q}$ the generalized McKay quiver of $(Q, G)$ and $\Gamma _{Q}$ the Auslander-Reiten quiver of $\mathbb {k}Q$. Then $G$ acts functorially on the quiver $\Gamma _{Q}$. We show that the Auslander-Reiten quiver of $\mathbb {k}\widehat{Q}$ coincides with the generalized McKay quiver of $(\Gamma _{Q}, G)$.
LA - eng
KW - Auslander-Reiten quiver; generalized McKay quiver; duality
UR - http://eudml.org/doc/294277
ER -
References
top- Assem, I., Simson, D., Skowroński, A., 10.1017/CBO9780511614309, London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). (2006) Zbl1092.16001MR2197389DOI10.1017/CBO9780511614309
- Auslander, M., Reiten, I., Smalø, S. O., 10.1017/CBO9780511623608, Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). (1995) Zbl0834.16001MR1314422DOI10.1017/CBO9780511623608
- Demonet, L., 10.1016/j.jalgebra.2009.11.034, J. Algebra 323 (2010), 1052-1059. (2010) Zbl1210.16017MR2578593DOI10.1016/j.jalgebra.2009.11.034
- Deng, B., Du, J., 10.1090/S0002-9947-06-03812-8, Trans. Am. Math. Soc. 358 (2006), 3591-3622. (2006) Zbl1095.16007MR2218990DOI10.1090/S0002-9947-06-03812-8
- Deng, B., Du, J., Parshall, B., Wang, J., 10.1090/surv/150, Mathematical Surveys and Monographs 150. American Mathematical Society, Providence (2008). (2008) Zbl1154.17003MR2457938DOI10.1090/surv/150
- Gabriel, P., Roĭter, A. V., Algebra VIII. Representations of Finite-Dimensional Algebras, Encyclopaedia of Mathematical Sciences 73. Springer, Berlin A. I. Kostrikin, et al. (1992). (1992) Zbl0839.16001MR1239447
- Guo, J., 10.1007/s11425-008-0176-y, Sci. China, Ser. A 52 (2009), 511-516. (2009) Zbl1181.16014MR2491769DOI10.1007/s11425-008-0176-y
- Hou, B., Yang, S., 10.1016/j.jalgebra.2011.02.007, J. Algebra 332 (2011), 209-228. (2011) Zbl1252.16010MR2774685DOI10.1016/j.jalgebra.2011.02.007
- Hou, B., Yang, S., 10.4134/JKMS.2015.52.2.239, J. Korean Math. Soc. 52 (2015), 239-268. (2015) Zbl1335.16011MR3318368DOI10.4134/JKMS.2015.52.2.239
- Hubery, A., Representations of Quiver Respecting a Quiver Automorphism and a Theorem of Kac, Ph.D. Thesis, University of Leeds, Leeds (2002). (2002) MR2025328
- Hubery, A., 10.1112/S0024610703004988, J. Lond. Math. Soc., II. Ser. 69 (2004), 79-96. (2004) Zbl1062.16021MR2025328DOI10.1112/S0024610703004988
- Kac, V. G., 10.1017/CBO9780511626234, Cambridge University Press, Cambridge (1990). (1990) Zbl0716.17022MR1104219DOI10.1017/CBO9780511626234
- Liu, G. X., Classification of Finite Dimensional Basic Hopf Algebras and Related Topics, Dissertation for the Doctoral Degree, Zhejiang University, Hangzhou (2005). (2005)
- McKay, J., 10.1090/pspum/037, The Santa Cruz Conference on Finite Groups, Proc. Sympos. Pure Math. 37 American Mathematical Society, Providence (1980), 183-186. (1980) Zbl0451.05026MR0604577DOI10.1090/pspum/037
- Reiten, I., Riedtmann, C., 10.1016/0021-8693(85)90156-5, J. Algebra 92 (1985), 224-282. (1985) Zbl0549.16017MR0772481DOI10.1016/0021-8693(85)90156-5
- Zhang, M., 10.1007/s10468-010-9237-3, Algebr. Represent. Theory 15 (2012), 203-210. (2012) Zbl1252.16015MR2892506DOI10.1007/s10468-010-9237-3
- Zhang, M., Li, F., 10.1016/j.jalgebra.2008.09.035, J. Algebra 321 (2009), 567-581. (2009) Zbl1207.16015MR2483282DOI10.1016/j.jalgebra.2008.09.035
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.