The duality of Auslander-Reiten quiver of path algebras

Bo Hou; Shilin Yang

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 4, page 925-943
  • ISSN: 0011-4642

Abstract

top
Let Q be a finite union of Dynkin quivers, G Aut ( 𝕜 Q ) a finite abelian group, Q ^ the generalized McKay quiver of ( Q , G ) and Γ Q the Auslander-Reiten quiver of 𝕜 Q . Then G acts functorially on the quiver Γ Q . We show that the Auslander-Reiten quiver of 𝕜 Q ^ coincides with the generalized McKay quiver of ( Γ Q , G ) .

How to cite

top

Hou, Bo, and Yang, Shilin. "The duality of Auslander-Reiten quiver of path algebras." Czechoslovak Mathematical Journal 69.4 (2019): 925-943. <http://eudml.org/doc/294277>.

@article{Hou2019,
abstract = {Let $Q$ be a finite union of Dynkin quivers, $G\subseteq \{\rm Aut\}(\mathbb \{k\}\{Q\})$ a finite abelian group, $\widehat\{Q\}$ the generalized McKay quiver of $(Q, G)$ and $\Gamma _\{Q\}$ the Auslander-Reiten quiver of $\mathbb \{k\}Q$. Then $G$ acts functorially on the quiver $\Gamma _\{Q\}$. We show that the Auslander-Reiten quiver of $\mathbb \{k\}\widehat\{Q\}$ coincides with the generalized McKay quiver of $(\Gamma _\{Q\}, G)$.},
author = {Hou, Bo, Yang, Shilin},
journal = {Czechoslovak Mathematical Journal},
keywords = {Auslander-Reiten quiver; generalized McKay quiver; duality},
language = {eng},
number = {4},
pages = {925-943},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The duality of Auslander-Reiten quiver of path algebras},
url = {http://eudml.org/doc/294277},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Hou, Bo
AU - Yang, Shilin
TI - The duality of Auslander-Reiten quiver of path algebras
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 925
EP - 943
AB - Let $Q$ be a finite union of Dynkin quivers, $G\subseteq {\rm Aut}(\mathbb {k}{Q})$ a finite abelian group, $\widehat{Q}$ the generalized McKay quiver of $(Q, G)$ and $\Gamma _{Q}$ the Auslander-Reiten quiver of $\mathbb {k}Q$. Then $G$ acts functorially on the quiver $\Gamma _{Q}$. We show that the Auslander-Reiten quiver of $\mathbb {k}\widehat{Q}$ coincides with the generalized McKay quiver of $(\Gamma _{Q}, G)$.
LA - eng
KW - Auslander-Reiten quiver; generalized McKay quiver; duality
UR - http://eudml.org/doc/294277
ER -

References

top
  1. Assem, I., Simson, D., Skowroński, A., 10.1017/CBO9780511614309, London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). (2006) Zbl1092.16001MR2197389DOI10.1017/CBO9780511614309
  2. Auslander, M., Reiten, I., Smalø, S. O., 10.1017/CBO9780511623608, Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). (1995) Zbl0834.16001MR1314422DOI10.1017/CBO9780511623608
  3. Demonet, L., 10.1016/j.jalgebra.2009.11.034, J. Algebra 323 (2010), 1052-1059. (2010) Zbl1210.16017MR2578593DOI10.1016/j.jalgebra.2009.11.034
  4. Deng, B., Du, J., 10.1090/S0002-9947-06-03812-8, Trans. Am. Math. Soc. 358 (2006), 3591-3622. (2006) Zbl1095.16007MR2218990DOI10.1090/S0002-9947-06-03812-8
  5. Deng, B., Du, J., Parshall, B., Wang, J., 10.1090/surv/150, Mathematical Surveys and Monographs 150. American Mathematical Society, Providence (2008). (2008) Zbl1154.17003MR2457938DOI10.1090/surv/150
  6. Gabriel, P., Roĭter, A. V., Algebra VIII. Representations of Finite-Dimensional Algebras, Encyclopaedia of Mathematical Sciences 73. Springer, Berlin A. I. Kostrikin, et al. (1992). (1992) Zbl0839.16001MR1239447
  7. Guo, J., 10.1007/s11425-008-0176-y, Sci. China, Ser. A 52 (2009), 511-516. (2009) Zbl1181.16014MR2491769DOI10.1007/s11425-008-0176-y
  8. Hou, B., Yang, S., 10.1016/j.jalgebra.2011.02.007, J. Algebra 332 (2011), 209-228. (2011) Zbl1252.16010MR2774685DOI10.1016/j.jalgebra.2011.02.007
  9. Hou, B., Yang, S., 10.4134/JKMS.2015.52.2.239, J. Korean Math. Soc. 52 (2015), 239-268. (2015) Zbl1335.16011MR3318368DOI10.4134/JKMS.2015.52.2.239
  10. Hubery, A., Representations of Quiver Respecting a Quiver Automorphism and a Theorem of Kac, Ph.D. Thesis, University of Leeds, Leeds (2002). (2002) MR2025328
  11. Hubery, A., 10.1112/S0024610703004988, J. Lond. Math. Soc., II. Ser. 69 (2004), 79-96. (2004) Zbl1062.16021MR2025328DOI10.1112/S0024610703004988
  12. Kac, V. G., 10.1017/CBO9780511626234, Cambridge University Press, Cambridge (1990). (1990) Zbl0716.17022MR1104219DOI10.1017/CBO9780511626234
  13. Liu, G. X., Classification of Finite Dimensional Basic Hopf Algebras and Related Topics, Dissertation for the Doctoral Degree, Zhejiang University, Hangzhou (2005). (2005) 
  14. McKay, J., 10.1090/pspum/037, The Santa Cruz Conference on Finite Groups, Proc. Sympos. Pure Math. 37 American Mathematical Society, Providence (1980), 183-186. (1980) Zbl0451.05026MR0604577DOI10.1090/pspum/037
  15. Reiten, I., Riedtmann, C., 10.1016/0021-8693(85)90156-5, J. Algebra 92 (1985), 224-282. (1985) Zbl0549.16017MR0772481DOI10.1016/0021-8693(85)90156-5
  16. Zhang, M., 10.1007/s10468-010-9237-3, Algebr. Represent. Theory 15 (2012), 203-210. (2012) Zbl1252.16015MR2892506DOI10.1007/s10468-010-9237-3
  17. Zhang, M., Li, F., 10.1016/j.jalgebra.2008.09.035, J. Algebra 321 (2009), 567-581. (2009) Zbl1207.16015MR2483282DOI10.1016/j.jalgebra.2008.09.035

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.