A logarithmic regularity criterion for 3D Navier-Stokes system in a bounded domain

Jishan Fan; Xuanji Jia; Yong Zhou

Applications of Mathematics (2019)

  • Volume: 64, Issue: 4, page 397-407
  • ISSN: 0862-7940

Abstract

top
This paper proves a logarithmic regularity criterion for 3D Navier-Stokes system in a bounded domain with the Navier-type boundary condition.

How to cite

top

Fan, Jishan, Jia, Xuanji, and Zhou, Yong. "A logarithmic regularity criterion for 3D Navier-Stokes system in a bounded domain." Applications of Mathematics 64.4 (2019): 397-407. <http://eudml.org/doc/294282>.

@article{Fan2019,
abstract = {This paper proves a logarithmic regularity criterion for 3D Navier-Stokes system in a bounded domain with the Navier-type boundary condition.},
author = {Fan, Jishan, Jia, Xuanji, Zhou, Yong},
journal = {Applications of Mathematics},
keywords = {regularity criterion; Navier-Stokes system; bounded domain},
language = {eng},
number = {4},
pages = {397-407},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A logarithmic regularity criterion for 3D Navier-Stokes system in a bounded domain},
url = {http://eudml.org/doc/294282},
volume = {64},
year = {2019},
}

TY - JOUR
AU - Fan, Jishan
AU - Jia, Xuanji
AU - Zhou, Yong
TI - A logarithmic regularity criterion for 3D Navier-Stokes system in a bounded domain
JO - Applications of Mathematics
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 4
SP - 397
EP - 407
AB - This paper proves a logarithmic regularity criterion for 3D Navier-Stokes system in a bounded domain with the Navier-type boundary condition.
LA - eng
KW - regularity criterion; Navier-Stokes system; bounded domain
UR - http://eudml.org/doc/294282
ER -

References

top
  1. Adams, R. A., Fournier, J. J. F., 10.1016/S0079-8169(13)62896-2, Pure and Applied Mathematics 140, Academic Press, New York (2003). (2003) Zbl1098.46001MR2424078DOI10.1016/S0079-8169(13)62896-2
  2. Azzam, J., Bedrossian, J., 10.1090/s0002-9947-2014-06040-6, Trans. Am. Math. Soc. 367 (2015), 3095-3118. (2015) Zbl1315.35009MR3314802DOI10.1090/s0002-9947-2014-06040-6
  3. Veiga, H. Beirão da, Berselli, L. C., 10.1016/j.jde.2008.02.043, J. Differ. Equations 246 (2009), 597-628. (2009) Zbl1155.35067MR2468730DOI10.1016/j.jde.2008.02.043
  4. Veiga, H. Beirão da, Crispo, F., 10.1007/s00021-009-0295-4, J. Math. Fluid Mech. 12 (2010), 397-411. (2010) Zbl1261.35099MR2674070DOI10.1007/s00021-009-0295-4
  5. Bendali, A., Dominguez, J. M., Gallic, S., 10.1016/0022-247x(85)90330-0, J. Math. Anal. Appl. 107 (1985), 537-560. (1985) Zbl0591.35053MR0787732DOI10.1016/0022-247x(85)90330-0
  6. Berselli, L. C., On a regularity criterion for the solutions to the 3D Navier-Stokes equations, Differ. Integral Equ. 15 (2002), 1129-1137. (2002) Zbl1034.35087MR1919765
  7. Georgescu, V., 10.1007/bf02411693, Ann. Mat. Pura Appl. (4) 122 (1979), 159-198. (1979) Zbl0432.58026MR0565068DOI10.1007/bf02411693
  8. Giga, Y., 10.1016/0022-0396(86)90096-3, J. Differ. Equations 61 (1986), 186-212. (1986) Zbl0577.35058MR0833416DOI10.1016/0022-0396(86)90096-3
  9. He, F., Ma, C., Wang, Y., 10.1016/j.amc.2016.01.054, Appl. Math. Comput. 281 (2016), 148-151. (2016) Zbl07039666MR3466091DOI10.1016/j.amc.2016.01.054
  10. Hopf, E., 10.1002/mana.3210040121, Math. Nachr. 4 (1951), 213-231 German. (1951) Zbl0042.10604MR0050423DOI10.1002/mana.3210040121
  11. Huang, T., Wang, C., Wen, H., 10.1016/j.jde.2011.07.036, J. Differ. Equations 252 (2012), 2222-2265. (2012) Zbl1233.35168MR2860617DOI10.1016/j.jde.2011.07.036
  12. Kim, H., 10.1137/s0036141004442197, SIAM J. Math. Anal. 37 (2006), 1417-1434. (2006) Zbl1141.35432MR2215270DOI10.1137/s0036141004442197
  13. Leray, J., 10.1007/BF02547354, Acta Math. 63 (1934), 193-248 French 9999JFM99999 60.0726.05. (1934) MR1555394DOI10.1007/BF02547354
  14. Lions, P.-L., Mathematical Topics in Fluid Mechanics. Vol. 2: Compressible Models, Oxford Lecture Series in Mathematics and Its Applications 10, Clarendon Press, Oxford (1998). (1998) Zbl0908.76004MR1637634
  15. Lunardi, A., 10.1007/978-88-7642-638-4, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) 9, Edizioni della Normale, Pisa (2009). (2009) Zbl1171.41001MR2523200DOI10.1007/978-88-7642-638-4
  16. Nakao, K., Taniuchi, Y., 10.1016/j.na.2018.05.018, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 176 (2018), 48-55. (2018) Zbl1403.35207MR3856717DOI10.1016/j.na.2018.05.018
  17. Nakao, K., Taniuchi, Y., 10.1007/s00220-017-3061-0, Commun. Math. Phys. 359 (2018), 951-973. (2018) Zbl1397.35176MR3784537DOI10.1007/s00220-017-3061-0
  18. Nirenberg, L., On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 13 (1959), 115-162. (1959) Zbl0088.07601MR0109940
  19. Wahl, W. von, 10.1002/mma.1670150206, Math. Methods Appl. Sci. 15 (1992), 123-143 9999DOI99999 10.1002/mma.1670150206 . (1992) Zbl0747.31006MR1149300DOI10.1002/mma.1670150206

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.