Three dimensional near-horizon metrics that are Einstein-Weyl
Archivum Mathematicum (2017)
- Volume: 053, Issue: 5, page 335-345
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topRandall, Matthew. "Three dimensional near-horizon metrics that are Einstein-Weyl." Archivum Mathematicum 053.5 (2017): 335-345. <http://eudml.org/doc/294285>.
@article{Randall2017,
abstract = {We investigate which three dimensional near-horizon metrics $g_\{NH\}$ admit a compatible 1-form $X$ such that $(X, [g_\{NH\}])$ defines an Einstein-Weyl structure. We find explicit examples and see that some of the solutions give rise to Einstein-Weyl structures of dispersionless KP type and dispersionless Hirota (aka hyperCR) type.},
author = {Randall, Matthew},
journal = {Archivum Mathematicum},
language = {eng},
number = {5},
pages = {335-345},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Three dimensional near-horizon metrics that are Einstein-Weyl},
url = {http://eudml.org/doc/294285},
volume = {053},
year = {2017},
}
TY - JOUR
AU - Randall, Matthew
TI - Three dimensional near-horizon metrics that are Einstein-Weyl
JO - Archivum Mathematicum
PY - 2017
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 053
IS - 5
SP - 335
EP - 345
AB - We investigate which three dimensional near-horizon metrics $g_{NH}$ admit a compatible 1-form $X$ such that $(X, [g_{NH}])$ defines an Einstein-Weyl structure. We find explicit examples and see that some of the solutions give rise to Einstein-Weyl structures of dispersionless KP type and dispersionless Hirota (aka hyperCR) type.
LA - eng
UR - http://eudml.org/doc/294285
ER -
References
top- Calderbank, D.M.J., Kruglikov, B., Integrability via geometry: dispersionless differential equations in three and four dimensions, arXiv:1612.02753.
- Cartan, E., 10.24033/asens.901, Ann. Sci. École Norm. Sup. (3) 60 (1943), 1–16. (1943) Zbl0028.30802MR0014292DOI10.24033/asens.901
- Doubrov, B., Ferapontov, E.V., Kruglikov, B., Novikov, V., On the integrability in Grassmann geometries: integrable systems associated with fourfolds , arXiv:1503.02274.
- Dunajski, M., Ferapontov, E.V., Kruglikov, B., 10.1063/1.4927251, J. Math. Phys. 56 (8) (2015), 10pp., 083501. (2015) Zbl1325.53058MR3455337DOI10.1063/1.4927251
- Dunajski, M., Gutowski, J., Sabra, W., 10.1088/1361-6382/aa5992, Classical Quantum Gravity 34 (2017), 21pp., 045009. (2017) Zbl1358.83081MR3605882DOI10.1088/1361-6382/aa5992
- Dunajski, M., Kryński, W., 10.1017/S0305004114000164, Math. Proc. Cambridge Philos. Soc. 157 (1) (2014), 139–150. (2014) Zbl1296.53036MR3211812DOI10.1017/S0305004114000164
- Dunajski, M., Kryński, W., 10.1016/j.geomphys.2014.08.012, J. Geom. Phys. 86 (2014), 296–302. (2014) Zbl1316.34036MR3282331DOI10.1016/j.geomphys.2014.08.012
- Dunajski, M., Mason, L.J., Tod, K.P., 10.1016/S0393-0440(00)00033-4, J. Geom. Phys. 37 (2001), 63–93. (2001) Zbl0990.53052MR1807082DOI10.1016/S0393-0440(00)00033-4
- Eastwood, M.G., Notes on conformal differential geometry, Rend. Circ. Mat. Palermo (2) Suppl. 43 (1996), 57–96. (1996) Zbl0911.53020MR1463509
- Eastwood, M.G., Tod, K.P., Local constraints on Einstein-Weyl geometries, J. Reine Angew. Math. 491 (1997), 183–198. (1997) Zbl0876.53029MR1476092
- Ferapontov, E.V., Kruglikov, B., 10.4310/jdg/1405447805, J. Differential Geom. 97 (2014), 215–254. (2014) Zbl1306.37084MR3263506DOI10.4310/jdg/1405447805
- Hitchin, N.J., 10.1007/BFb0066025, Lecture Notes in Math., Springer, Berlin-New York, 1982, Twistor geometry and nonlinear systems (Primorsko, 1980), 73–99. (1982) Zbl0507.53025MR0699802DOI10.1007/BFb0066025
- Kunduri, H.K., Lucietti, J., 10.1063/1.3190480, J. Math. Phys. 50 (2009), 41pp., 082502. (2009) Zbl1223.83032MR2554413DOI10.1063/1.3190480
- Kunduri, H.K., Lucietti, J., 10.12942/lrr-2013-8, Living Rev. Relativity 16 (2013), 8pp., arXiv:1306.2517v2. (2013) Zbl1320.83005MR2554413DOI10.12942/lrr-2013-8
- LeBrun, C., Mason, L.J., 10.4310/MRL.2009.v16.n2.a7, Math. Res. Lett. 16 (2009), 291–301. (2009) Zbl1176.53071MR2496745DOI10.4310/MRL.2009.v16.n2.a7
- Lewandowski, J., Pawlowski, T., 10.1088/0264-9381/20/4/303, Classical Quantum Gravity 20 (2003), 587–606, arXiv:gr-qc/0208032. (2003) Zbl1028.83025MR1959394DOI10.1088/0264-9381/20/4/303
- Lewandowski, J., Racz, I., Szereszeweski, A., 10.1103/PhysRevD.96.044001, Phys. Rev. D 96 (2017), 044001, arXiv:1701.01704. (2017) DOI10.1103/PhysRevD.96.044001
- Lewandowski, J., Szereszeweski, A., Waluk, P., When isolated horizons met near horizon geometries, 2nd LeCosPA Symposium Proceedings, “Everything about Gravity" celebrating the centenary of Einstein's General Relativity, December 14-18, Taipei, 2015, arXiv:1602.01158. (2015) MR1744050
- Li, C., Lucietti, J., 10.1016/j.physletb.2014.09.012, Phys. Lett. B 738 (2014), 48–54. (2014) Zbl1360.83037MR3272448DOI10.1016/j.physletb.2014.09.012
- Nurowski, P., 10.1016/j.geomphys.2004.11.006, J. Geom. Phys. 55 (1) (2005), 19–49. (2005) Zbl1082.53024MR2157414DOI10.1016/j.geomphys.2004.11.006
- Tod, K.P., 10.1063/1.533426, J. Math. Phys. 41 (2000), 5572–5581. (2000) Zbl0979.53050MR1770973DOI10.1063/1.533426
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.