Three dimensional near-horizon metrics that are Einstein-Weyl

Matthew Randall

Archivum Mathematicum (2017)

  • Volume: 053, Issue: 5, page 335-345
  • ISSN: 0044-8753

Abstract

top
We investigate which three dimensional near-horizon metrics g N H admit a compatible 1-form X such that ( X , [ g N H ] ) defines an Einstein-Weyl structure. We find explicit examples and see that some of the solutions give rise to Einstein-Weyl structures of dispersionless KP type and dispersionless Hirota (aka hyperCR) type.

How to cite

top

Randall, Matthew. "Three dimensional near-horizon metrics that are Einstein-Weyl." Archivum Mathematicum 053.5 (2017): 335-345. <http://eudml.org/doc/294285>.

@article{Randall2017,
abstract = {We investigate which three dimensional near-horizon metrics $g_\{NH\}$ admit a compatible 1-form $X$ such that $(X, [g_\{NH\}])$ defines an Einstein-Weyl structure. We find explicit examples and see that some of the solutions give rise to Einstein-Weyl structures of dispersionless KP type and dispersionless Hirota (aka hyperCR) type.},
author = {Randall, Matthew},
journal = {Archivum Mathematicum},
language = {eng},
number = {5},
pages = {335-345},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Three dimensional near-horizon metrics that are Einstein-Weyl},
url = {http://eudml.org/doc/294285},
volume = {053},
year = {2017},
}

TY - JOUR
AU - Randall, Matthew
TI - Three dimensional near-horizon metrics that are Einstein-Weyl
JO - Archivum Mathematicum
PY - 2017
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 053
IS - 5
SP - 335
EP - 345
AB - We investigate which three dimensional near-horizon metrics $g_{NH}$ admit a compatible 1-form $X$ such that $(X, [g_{NH}])$ defines an Einstein-Weyl structure. We find explicit examples and see that some of the solutions give rise to Einstein-Weyl structures of dispersionless KP type and dispersionless Hirota (aka hyperCR) type.
LA - eng
UR - http://eudml.org/doc/294285
ER -

References

top
  1. Calderbank, D.M.J., Kruglikov, B., Integrability via geometry: dispersionless differential equations in three and four dimensions, arXiv:1612.02753. 
  2. Cartan, E., 10.24033/asens.901, Ann. Sci. École Norm. Sup. (3) 60 (1943), 1–16. (1943) Zbl0028.30802MR0014292DOI10.24033/asens.901
  3. Doubrov, B., Ferapontov, E.V., Kruglikov, B., Novikov, V., On the integrability in Grassmann geometries: integrable systems associated with fourfolds G r ( 3 , 5 ) , arXiv:1503.02274. 
  4. Dunajski, M., Ferapontov, E.V., Kruglikov, B., 10.1063/1.4927251, J. Math. Phys. 56 (8) (2015), 10pp., 083501. (2015) Zbl1325.53058MR3455337DOI10.1063/1.4927251
  5. Dunajski, M., Gutowski, J., Sabra, W., 10.1088/1361-6382/aa5992, Classical Quantum Gravity 34 (2017), 21pp., 045009. (2017) Zbl1358.83081MR3605882DOI10.1088/1361-6382/aa5992
  6. Dunajski, M., Kryński, W., 10.1017/S0305004114000164, Math. Proc. Cambridge Philos. Soc. 157 (1) (2014), 139–150. (2014) Zbl1296.53036MR3211812DOI10.1017/S0305004114000164
  7. Dunajski, M., Kryński, W., 10.1016/j.geomphys.2014.08.012, J. Geom. Phys. 86 (2014), 296–302. (2014) Zbl1316.34036MR3282331DOI10.1016/j.geomphys.2014.08.012
  8. Dunajski, M., Mason, L.J., Tod, K.P., 10.1016/S0393-0440(00)00033-4, J. Geom. Phys. 37 (2001), 63–93. (2001) Zbl0990.53052MR1807082DOI10.1016/S0393-0440(00)00033-4
  9. Eastwood, M.G., Notes on conformal differential geometry, Rend. Circ. Mat. Palermo (2) Suppl. 43 (1996), 57–96. (1996) Zbl0911.53020MR1463509
  10. Eastwood, M.G., Tod, K.P., Local constraints on Einstein-Weyl geometries, J. Reine Angew. Math. 491 (1997), 183–198. (1997) Zbl0876.53029MR1476092
  11. Ferapontov, E.V., Kruglikov, B., 10.4310/jdg/1405447805, J. Differential Geom. 97 (2014), 215–254. (2014) Zbl1306.37084MR3263506DOI10.4310/jdg/1405447805
  12. Hitchin, N.J., 10.1007/BFb0066025, Lecture Notes in Math., Springer, Berlin-New York, 1982, Twistor geometry and nonlinear systems (Primorsko, 1980), 73–99. (1982) Zbl0507.53025MR0699802DOI10.1007/BFb0066025
  13. Kunduri, H.K., Lucietti, J., 10.1063/1.3190480, J. Math. Phys. 50 (2009), 41pp., 082502. (2009) Zbl1223.83032MR2554413DOI10.1063/1.3190480
  14. Kunduri, H.K., Lucietti, J., 10.12942/lrr-2013-8, Living Rev. Relativity 16 (2013), 8pp., arXiv:1306.2517v2. (2013) Zbl1320.83005MR2554413DOI10.12942/lrr-2013-8
  15. LeBrun, C., Mason, L.J., 10.4310/MRL.2009.v16.n2.a7, Math. Res. Lett. 16 (2009), 291–301. (2009) Zbl1176.53071MR2496745DOI10.4310/MRL.2009.v16.n2.a7
  16. Lewandowski, J., Pawlowski, T., 10.1088/0264-9381/20/4/303, Classical Quantum Gravity 20 (2003), 587–606, arXiv:gr-qc/0208032. (2003) Zbl1028.83025MR1959394DOI10.1088/0264-9381/20/4/303
  17. Lewandowski, J., Racz, I., Szereszeweski, A., 10.1103/PhysRevD.96.044001, Phys. Rev. D 96 (2017), 044001, arXiv:1701.01704. (2017) DOI10.1103/PhysRevD.96.044001
  18. Lewandowski, J., Szereszeweski, A., Waluk, P., When isolated horizons met near horizon geometries, 2nd LeCosPA Symposium Proceedings, “Everything about Gravity" celebrating the centenary of Einstein's General Relativity, December 14-18, Taipei, 2015, arXiv:1602.01158. (2015) MR1744050
  19. Li, C., Lucietti, J., 10.1016/j.physletb.2014.09.012, Phys. Lett. B 738 (2014), 48–54. (2014) Zbl1360.83037MR3272448DOI10.1016/j.physletb.2014.09.012
  20. Nurowski, P., 10.1016/j.geomphys.2004.11.006, J. Geom. Phys. 55 (1) (2005), 19–49. (2005) Zbl1082.53024MR2157414DOI10.1016/j.geomphys.2004.11.006
  21. Tod, K.P., 10.1063/1.533426, J. Math. Phys. 41 (2000), 5572–5581. (2000) Zbl0979.53050MR1770973DOI10.1063/1.533426

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.