Epimorphisms between finite MV-algebras

Aldo V. Figallo; Marina B. Lattanzi

Mathematica Bohemica (2017)

  • Volume: 142, Issue: 4, page 345-355
  • ISSN: 0862-7959

Abstract

top
MV-algebras were introduced by Chang to prove the completeness of the infinite-valued Łukasiewicz propositional calculus. Recently, algebraic theory of MV-algebras has been intensively studied. Wajsberg algebras are just a reformulation of Chang MV-algebras where implication is used instead of disjunction. Using these equivalence, in this paper we provide conditions for the existence of an epimorphism between two finite MV-algebras A and B . Specifically, we define the mv-functions with domain in the ordered set of prime elements of B and with range in the ordered set of prime elements of A , and prove that every epimorphism from A to B can be uniquely constructed from an mv-function.

How to cite

top

Figallo, Aldo V., and Lattanzi, Marina B.. "Epimorphisms between finite MV-algebras." Mathematica Bohemica 142.4 (2017): 345-355. <http://eudml.org/doc/294300>.

@article{Figallo2017,
abstract = {MV-algebras were introduced by Chang to prove the completeness of the infinite-valued Łukasiewicz propositional calculus. Recently, algebraic theory of MV-algebras has been intensively studied. Wajsberg algebras are just a reformulation of Chang MV-algebras where implication is used instead of disjunction. Using these equivalence, in this paper we provide conditions for the existence of an epimorphism between two finite MV-algebras $A$ and $B$. Specifically, we define the mv-functions with domain in the ordered set of prime elements of $B$ and with range in the ordered set of prime elements of $A$, and prove that every epimorphism from $A$ to $B$ can be uniquely constructed from an mv-function.},
author = {Figallo, Aldo V., Lattanzi, Marina B.},
journal = {Mathematica Bohemica},
keywords = {MV-algebras; mv-function; epimorphism},
language = {eng},
number = {4},
pages = {345-355},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Epimorphisms between finite MV-algebras},
url = {http://eudml.org/doc/294300},
volume = {142},
year = {2017},
}

TY - JOUR
AU - Figallo, Aldo V.
AU - Lattanzi, Marina B.
TI - Epimorphisms between finite MV-algebras
JO - Mathematica Bohemica
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 142
IS - 4
SP - 345
EP - 355
AB - MV-algebras were introduced by Chang to prove the completeness of the infinite-valued Łukasiewicz propositional calculus. Recently, algebraic theory of MV-algebras has been intensively studied. Wajsberg algebras are just a reformulation of Chang MV-algebras where implication is used instead of disjunction. Using these equivalence, in this paper we provide conditions for the existence of an epimorphism between two finite MV-algebras $A$ and $B$. Specifically, we define the mv-functions with domain in the ordered set of prime elements of $B$ and with range in the ordered set of prime elements of $A$, and prove that every epimorphism from $A$ to $B$ can be uniquely constructed from an mv-function.
LA - eng
KW - MV-algebras; mv-function; epimorphism
UR - http://eudml.org/doc/294300
ER -

References

top
  1. Abad, M., Figallo, A., On Łukasiewicz Homomorphisms, Facultad de Filosofía, Humanidades y Artes, Universidad Nacional de San Juan (1992). (1992) 
  2. Berman, J., Blok, W. J., 10.1023/B:STUD.0000037125.49866.50, Stud. Log. 77 (2004), 153-180. (2004) Zbl1062.03062MR2080237DOI10.1023/B:STUD.0000037125.49866.50
  3. Boicescu, V., Filipoiu, A., Georgescu, G., Rudeanu, S., 10.1016/s0167-5060(08)x7005-0, Annals of Discrete Mathematics 49. North-Holland, Amsterdam (1991). (1991) Zbl0726.06007MR1112790DOI10.1016/s0167-5060(08)x7005-0
  4. Chang, C. C., 10.2307/1993227, Trans. Am. Math. Soc. 88 (1958), 467-490. (1958) Zbl0084.00704MR0094302DOI10.2307/1993227
  5. Chang,, C. C., 10.2307/1993423, Trans. Am. Math. Soc. 93 (1959), 74-80. (1959) Zbl0093.01104MR0122718DOI10.2307/1993423
  6. Cignoli, R., D'Ottaviano, I. M. L., Mundici, D., 10.1007/978-94-015-9480-6, Trends in Logic-Studia Logica Library 7. Kluwer Academic Publishers, Dordrecht (2000). (2000) Zbl0937.06009MR1786097DOI10.1007/978-94-015-9480-6
  7. Cignoli, R., Dubuc, E. J., Mundici, D., 10.1016/j.jpaa.2003.10.021, J. Pure Appl. Algebra 189 (2004), 37-59. (2004) Zbl1055.06004MR2038562DOI10.1016/j.jpaa.2003.10.021
  8. Cignoli, R., Marra, V., 10.1515/form.2011.109, Forum Math. 24 (2012), 1317-1331. (2012) Zbl1273.06006MR2996994DOI10.1515/form.2011.109
  9. Figallo, A. V., Algebras implicativas de Łukasiewicz ( n + 1 ) -valuadas con diversas operaciones adicionales, Tesis Doctoral. Univ. Nac. del Sur (1990). (1990) 
  10. Font, J. M., Rodríguez, A. J., Torrens, A., Wajsberg algebras, Stochastica 8 (1984), 5-31. (1984) Zbl0557.03040MR0780136
  11. Komori, Y., 10.1017/S0027763000018249, Nagoya Math. J. 72 (1978), 127-133. (1978) Zbl0363.02015MR0514894DOI10.1017/S0027763000018249
  12. Komori, Y., 10.1017/S0027763000019577, Nagoya Math. J. 84 (1981), 119-133. (1981) Zbl0482.03007MR0641149DOI10.1017/S0027763000019577
  13. Łukasiewicz, J., On three-valued logics, Ruch filozoficzny 5 (1920), 169-171 Polish. (1920) 
  14. Łukasiewicz, J., Tarski, A., Untersuchungen über den Aussagenkalkül, C. R. Soc. Sc. Varsovie 23 (1930), 30-50. (1930) Zbl57.1319.01
  15. Martínez, N. G., 10.1007/BF00401552, Stud. Log. 49 (1990), 31-46. (1990) Zbl0717.03026MR1078437DOI10.1007/BF00401552
  16. Monteiro, L. F., Number of epimorphisms between finite Łukasiewicz algebras, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 49(97) (2006), 177-187. (2006) Zbl1150.03346MR2223313
  17. Rodríguez, A. J., Un studio algebraico de los cálculos proposicionales de Łukasiewicz, Ph. Doc. Diss. Universitat de Barcelona (1980). (1980) 
  18. Rodríguez, A. J., Torrens, A., Verdú, V., Łukasiewicz logic and Wajsberg algebras, Bull. Sect. Log., Pol. Acad. Sci. 19 (1990), 51-55. (1990) Zbl0717.03027MR1077992

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.