Harmonic metrics on four dimensional non-reductive homogeneous manifolds
Amirhesam Zaeim; Parvane Atashpeykar
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 2, page 475-490
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZaeim, Amirhesam, and Atashpeykar, Parvane. "Harmonic metrics on four dimensional non-reductive homogeneous manifolds." Czechoslovak Mathematical Journal 68.2 (2018): 475-490. <http://eudml.org/doc/294306>.
@article{Zaeim2018,
abstract = {We study harmonic metrics with respect to the class of invariant metrics on non-reductive homogeneous four dimensional manifolds. In particular, we consider harmonic lifted metrics with respect to the Sasaki lifts, horizontal lifts and complete lifts of the metrics under study.},
author = {Zaeim, Amirhesam, Atashpeykar, Parvane},
journal = {Czechoslovak Mathematical Journal},
keywords = {harmonic metric; non-reductive homogeneous space; pseudo-Riemannian geometry},
language = {eng},
number = {2},
pages = {475-490},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Harmonic metrics on four dimensional non-reductive homogeneous manifolds},
url = {http://eudml.org/doc/294306},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Zaeim, Amirhesam
AU - Atashpeykar, Parvane
TI - Harmonic metrics on four dimensional non-reductive homogeneous manifolds
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 475
EP - 490
AB - We study harmonic metrics with respect to the class of invariant metrics on non-reductive homogeneous four dimensional manifolds. In particular, we consider harmonic lifted metrics with respect to the Sasaki lifts, horizontal lifts and complete lifts of the metrics under study.
LA - eng
KW - harmonic metric; non-reductive homogeneous space; pseudo-Riemannian geometry
UR - http://eudml.org/doc/294306
ER -
References
top- Baird, P., Wood, J. C., 10.1093/acprof:oso/9780198503620.001.0001, London Mathematical Society Monographs New Series 29, Oxford University Press, Oxford (2003). (2003) Zbl1055.53049MR2044031DOI10.1093/acprof:oso/9780198503620.001.0001
- Bejan, C.-L., Druţă-Romaniuc, S.-L., 10.1016/j.difgeo.2012.05.004, Differ. Geom. Appl. 30 (2012), 306-317. (2012) Zbl1252.53083MR2926271DOI10.1016/j.difgeo.2012.05.004
- Bejan, C.-L., Druţă-Romaniuc, S.-L., 10.1007/s00009-013-0302-0, Mediterr. J. Math. 11 (2014), 123-136. (2014) Zbl1317.53041MR3160617DOI10.1007/s00009-013-0302-0
- Bejan, C.-L., Druţă-Romaniuc, S.-L., 10.1007/s00009-014-0409-y, Mediterr. J. Math. 12 (2015), 481-496. (2015) Zbl1322.53065MR3350322DOI10.1007/s00009-014-0409-y
- Benyounes, M., Loubeau, E., Wood, C. M., 10.1016/j.difgeo.2006.11.010, Differ. Geom. Appl. 25 (2007), 322-334. (2007) Zbl1128.53037MR2330461DOI10.1016/j.difgeo.2006.11.010
- Brozos-Vázquez, M., García-Río, E., Gilkey, P., Nikčević, S., Vázquez-Lorenzo, R., 10.2200/S00197ED1V01Y200906MAS005, Synthesis Lectures on Mathematics and Statistics 5, Morgan & Claypool Publishers, San Rafael (2009). (2009) Zbl1206.53039MR2656431DOI10.2200/S00197ED1V01Y200906MAS005
- Calvaruso, G., Fino, A., 10.4153/CJM-2011-091-1, Can. J. Math. 64 (2012), 778-804. (2012) Zbl1252.53056MR2957230DOI10.4153/CJM-2011-091-1
- Calvaruso, G., Fino, A., Zaeim, A., 10.1007/s00574-015-0083-0, Bull. Braz. Math. Soc. (N.S.) 46 (2015), 23-64. (2015) Zbl1318.53048MR3324177DOI10.1007/s00574-015-0083-0
- Calvaruso, G., Zaeim, A., 10.1016/j.geomphys.2014.02.007, J. Geom. Phys. 80 (2014), 15-25. (2014) Zbl1286.53046MR3188790DOI10.1016/j.geomphys.2014.02.007
- Calvaruso, G., Zaeim, A., 10.1515/advgeom-2014-0014, Adv. Geom. 14 (2014), 191-214. (2014) Zbl1298.53072MR3263422DOI10.1515/advgeom-2014-0014
- Chen, B.-Y., Nagano, T., 10.2969/jmsj/03620295, J. Math. Soc. Japan 36 (1984), 295-313. (1984) Zbl0543.58015MR0740319DOI10.2969/jmsj/03620295
- Dodson, C. T. J., Pérez, M. Trinidad, Vázquez-Abal, M. E., 10.36045/bbms/1102714982, Bull. Belg. Math. Soc. Simon Stevin 9 (2002), 481-490. (2002) Zbl1044.53052MR2016229DOI10.36045/bbms/1102714982
- J. Eells, Jr., J. H. Sampson, 10.2307/2373037, Am. J. Math. 86 (1964), 109-160. (1964) Zbl0122.40102MR0164306DOI10.2307/2373037
- Falcitelli, M., Pastore, A. M., On the tangent bundle and on the bundle of the linear frames over an affinely connected manifold, Math. Balk., New Ser. 2 (1988), 336-356. (1988) Zbl0677.53040MR0997625
- Fels, M. E., Renner, A. G., 10.4153/CJM-2006-012-1, Can. J. Math. 58 (2006), 282-311. (2006) Zbl1100.53043MR2209280DOI10.4153/CJM-2006-012-1
- Kowalski, O., Sekizawa, M., 10.1016/j.difgeo.2012.10.007, Differ. Geom. Appl. 31 (2013), 140-149. (2013) Zbl1277.53016MR3010084DOI10.1016/j.difgeo.2012.10.007
- O'Neill, B., Semi-Riemannian Geometry. With Applications to Relativity, Pure and Applied Mathematics 103, Academic Press, New York (1983). (1983) Zbl0531.53051MR0719023
- Patera, J., Sharp, R. T., Winternitz, P., Zassenhaus, H., 10.1063/1.522992, J. Math. Phys. 17 (1976), 986-994. (1976) Zbl0357.17004MR0404362DOI10.1063/1.522992
- Yano, K., Ishihara, S., Tangent and Cotangent Bundles. Differential Geometry, Pure and Applied Mathematics 16, Marcel Dekker, New York (1973). (1973) Zbl0262.53024MR0350650
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.