Monotonically normal -separable spaces may not be perfect
Commentationes Mathematicae Universitatis Carolinae (2018)
- Volume: 59, Issue: 3, page 391-398
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topPorter, John E.. "Monotonically normal $e$-separable spaces may not be perfect." Commentationes Mathematicae Universitatis Carolinae 59.3 (2018): 391-398. <http://eudml.org/doc/294321>.
@article{Porter2018,
abstract = {A topological space $X$ is said to be $e$-separable if $X$ has a $\sigma $-closed-discrete dense subset. Recently, G. Gruenhage and D. Lutzer showed that $e$-separable PIGO spaces are perfect and asked if $e$-separable monotonically normal spaces are perfect in general. The main purpose of this article is to provide examples of $e$-separable monotonically normal spaces which are not perfect. Extremely normal $e$-separable spaces are shown to be stratifiable.},
author = {Porter, John E.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {monotonically normal space; $\sigma $-closed-discrete dense set; $e$-separable space; perfect space; perfectly normal space; point network; perfect images of generalized ordered space},
language = {eng},
number = {3},
pages = {391-398},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Monotonically normal $e$-separable spaces may not be perfect},
url = {http://eudml.org/doc/294321},
volume = {59},
year = {2018},
}
TY - JOUR
AU - Porter, John E.
TI - Monotonically normal $e$-separable spaces may not be perfect
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 3
SP - 391
EP - 398
AB - A topological space $X$ is said to be $e$-separable if $X$ has a $\sigma $-closed-discrete dense subset. Recently, G. Gruenhage and D. Lutzer showed that $e$-separable PIGO spaces are perfect and asked if $e$-separable monotonically normal spaces are perfect in general. The main purpose of this article is to provide examples of $e$-separable monotonically normal spaces which are not perfect. Extremely normal $e$-separable spaces are shown to be stratifiable.
LA - eng
KW - monotonically normal space; $\sigma $-closed-discrete dense set; $e$-separable space; perfect space; perfectly normal space; point network; perfect images of generalized ordered space
UR - http://eudml.org/doc/294321
ER -
References
top- Balogh Z., 10.1090/S0002-9939-1985-0787901-1, Proc. Amer. Math. Soc. 94 (1985), no. 3, 497–501. MR0787901DOI10.1090/S0002-9939-1985-0787901-1
- Borges C. R., 10.1090/S0002-9939-1973-0324644-4, Proc. Amer. Math. Soc. 38 (1973), 211–214. MR0324644DOI10.1090/S0002-9939-1973-0324644-4
- Cairns P., Junilla H., Nyikos P., An application of Mary Ellen Rudin's solution to Nikiel's conjecture, Topology Appl. 195 (2015), 26–33. MR3414872
- Collins P. J., Reed G. M., Roscoe A. W., Rudin M. E., 10.1090/S0002-9939-1985-0787900-X, Proc. Amer. Math. Soc. 94 (1985), 487–496. MR0787900DOI10.1090/S0002-9939-1985-0787900-X
- Collins P. J., Roscoe A. W., 10.1090/S0002-9939-1984-0733418-9, Proc. Amer. Math. Soc. 90 (1984), no. 4, 631–640. Zbl0541.54034MR0733418DOI10.1090/S0002-9939-1984-0733418-9
- Dias R. R., Soukup D. T., On spaces with a -closed discrete dense sets, Topology Proc. 52 (2018), 245–264. MR3773584
- Gruenhage G., Lutzer D., 10.4064/fm343-1-2017, Fund. Math. 240 (2018), no. 2, 175–197. MR3720923DOI10.4064/fm343-1-2017
- Gruenhage G., Zenor P., Proto-metrizable spaces, Houston J. Math. 3 (1977), no. 1, 47–53. MR0442895
- Heath R. W., Lutzer D. J., Zenor P. L., 10.1090/S0002-9947-1973-0372826-2, Trans. Amer. Math. Soc. 178 (1973), 481–493. MR0372826DOI10.1090/S0002-9947-1973-0372826-2
- Lutzer D. J., On generalized ordered spaces, Dissertationes Math. Rozprawy Math. 89 (1971), 32 pages. MR0324668
- Moody P. J., Reed G. M., Roscoe A. W., Collins P. J., 10.4064/fm-138-2-69-81, Fund. Math. 138 (1991), no. 2, 69–81. MR1124537DOI10.4064/fm-138-2-69-81
- Ostaszewski A. J., Monotone normality and -diagonals in the class of inductively generated spaces, Topology, Vol. II (Proc. Fourth Colloq., Budapest, 1978), 905–930; Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam-New York, 1980. MR0588837
- Williams S. W., Zhou H. X., Strong versions of normality, General Topology and Applications, Lecture Notes on Pure and Appl. Math., Dekker 134 (1991), 379–389. Zbl0797.54011MR1142815
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.