Monotonically normal e -separable spaces may not be perfect

John E. Porter

Commentationes Mathematicae Universitatis Carolinae (2018)

  • Volume: 59, Issue: 3, page 391-398
  • ISSN: 0010-2628

Abstract

top
A topological space X is said to be e -separable if X has a σ -closed-discrete dense subset. Recently, G. Gruenhage and D. Lutzer showed that e -separable PIGO spaces are perfect and asked if e -separable monotonically normal spaces are perfect in general. The main purpose of this article is to provide examples of e -separable monotonically normal spaces which are not perfect. Extremely normal e -separable spaces are shown to be stratifiable.

How to cite

top

Porter, John E.. "Monotonically normal $e$-separable spaces may not be perfect." Commentationes Mathematicae Universitatis Carolinae 59.3 (2018): 391-398. <http://eudml.org/doc/294321>.

@article{Porter2018,
abstract = {A topological space $X$ is said to be $e$-separable if $X$ has a $\sigma $-closed-discrete dense subset. Recently, G. Gruenhage and D. Lutzer showed that $e$-separable PIGO spaces are perfect and asked if $e$-separable monotonically normal spaces are perfect in general. The main purpose of this article is to provide examples of $e$-separable monotonically normal spaces which are not perfect. Extremely normal $e$-separable spaces are shown to be stratifiable.},
author = {Porter, John E.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {monotonically normal space; $\sigma $-closed-discrete dense set; $e$-separable space; perfect space; perfectly normal space; point network; perfect images of generalized ordered space},
language = {eng},
number = {3},
pages = {391-398},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Monotonically normal $e$-separable spaces may not be perfect},
url = {http://eudml.org/doc/294321},
volume = {59},
year = {2018},
}

TY - JOUR
AU - Porter, John E.
TI - Monotonically normal $e$-separable spaces may not be perfect
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 3
SP - 391
EP - 398
AB - A topological space $X$ is said to be $e$-separable if $X$ has a $\sigma $-closed-discrete dense subset. Recently, G. Gruenhage and D. Lutzer showed that $e$-separable PIGO spaces are perfect and asked if $e$-separable monotonically normal spaces are perfect in general. The main purpose of this article is to provide examples of $e$-separable monotonically normal spaces which are not perfect. Extremely normal $e$-separable spaces are shown to be stratifiable.
LA - eng
KW - monotonically normal space; $\sigma $-closed-discrete dense set; $e$-separable space; perfect space; perfectly normal space; point network; perfect images of generalized ordered space
UR - http://eudml.org/doc/294321
ER -

References

top
  1. Balogh Z., 10.1090/S0002-9939-1985-0787901-1, Proc. Amer. Math. Soc. 94 (1985), no. 3, 497–501. MR0787901DOI10.1090/S0002-9939-1985-0787901-1
  2. Borges C. R., 10.1090/S0002-9939-1973-0324644-4, Proc. Amer. Math. Soc. 38 (1973), 211–214. MR0324644DOI10.1090/S0002-9939-1973-0324644-4
  3. Cairns P., Junilla H., Nyikos P., An application of Mary Ellen Rudin's solution to Nikiel's conjecture, Topology Appl. 195 (2015), 26–33. MR3414872
  4. Collins P. J., Reed G. M., Roscoe A. W., Rudin M. E., 10.1090/S0002-9939-1985-0787900-X, Proc. Amer. Math. Soc. 94 (1985), 487–496. MR0787900DOI10.1090/S0002-9939-1985-0787900-X
  5. Collins P. J., Roscoe A. W., 10.1090/S0002-9939-1984-0733418-9, Proc. Amer. Math. Soc. 90 (1984), no. 4, 631–640. Zbl0541.54034MR0733418DOI10.1090/S0002-9939-1984-0733418-9
  6. Dias R. R., Soukup D. T., On spaces with a σ -closed discrete dense sets, Topology Proc. 52 (2018), 245–264. MR3773584
  7. Gruenhage G., Lutzer D., 10.4064/fm343-1-2017, Fund. Math. 240 (2018), no. 2, 175–197. MR3720923DOI10.4064/fm343-1-2017
  8. Gruenhage G., Zenor P., Proto-metrizable spaces, Houston J. Math. 3 (1977), no. 1, 47–53. MR0442895
  9. Heath R. W., Lutzer D. J., Zenor P. L., 10.1090/S0002-9947-1973-0372826-2, Trans. Amer. Math. Soc. 178 (1973), 481–493. MR0372826DOI10.1090/S0002-9947-1973-0372826-2
  10. Lutzer D. J., On generalized ordered spaces, Dissertationes Math. Rozprawy Math. 89 (1971), 32 pages. MR0324668
  11. Moody P. J., Reed G. M., Roscoe A. W., Collins P. J., 10.4064/fm-138-2-69-81, Fund. Math. 138 (1991), no. 2, 69–81. MR1124537DOI10.4064/fm-138-2-69-81
  12. Ostaszewski A. J., Monotone normality and G δ -diagonals in the class of inductively generated spaces, Topology, Vol. II (Proc. Fourth Colloq., Budapest, 1978), 905–930; Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam-New York, 1980. MR0588837
  13. Williams S. W., Zhou H. X., Strong versions of normality, General Topology and Applications, Lecture Notes on Pure and Appl. Math., Dekker 134 (1991), 379–389. Zbl0797.54011MR1142815

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.