On prolongations of rank one discrete valuations
Commentationes Mathematicae Universitatis Carolinae (2019)
- Volume: 60, Issue: 3, page 299-304
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topEl Fadil, Lhoussain. "On prolongations of rank one discrete valuations." Commentationes Mathematicae Universitatis Carolinae 60.3 (2019): 299-304. <http://eudml.org/doc/294325>.
@article{ElFadil2019,
abstract = {Let $(K,\nu )$ be a valued field, where $\nu $ is a rank one discrete valuation. Let $R$ be its ring of valuation, $\{\mathfrak \{m\}\}$ its maximal ideal, and $L$ an extension of $K$, defined by a monic irreducible polynomial $F(X) \in R[X]$. Assume that $\overline\{F\}(X)$ factors as a product of $r$ distinct powers of monic irreducible polynomials. In this paper a condition which guarantees the existence of exactly $r$ distinct valuations of $K$ extending $\nu $ is given, in such a way that it generalizes the results given in the paper “Prolongations of valuations to finite extensions" by S. K. Khanduja, M. Kumar (2010).},
author = {El Fadil, Lhoussain},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {discrete valuation; extension of valuation; prime ideal factorization},
language = {eng},
number = {3},
pages = {299-304},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On prolongations of rank one discrete valuations},
url = {http://eudml.org/doc/294325},
volume = {60},
year = {2019},
}
TY - JOUR
AU - El Fadil, Lhoussain
TI - On prolongations of rank one discrete valuations
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 3
SP - 299
EP - 304
AB - Let $(K,\nu )$ be a valued field, where $\nu $ is a rank one discrete valuation. Let $R$ be its ring of valuation, ${\mathfrak {m}}$ its maximal ideal, and $L$ an extension of $K$, defined by a monic irreducible polynomial $F(X) \in R[X]$. Assume that $\overline{F}(X)$ factors as a product of $r$ distinct powers of monic irreducible polynomials. In this paper a condition which guarantees the existence of exactly $r$ distinct valuations of $K$ extending $\nu $ is given, in such a way that it generalizes the results given in the paper “Prolongations of valuations to finite extensions" by S. K. Khanduja, M. Kumar (2010).
LA - eng
KW - discrete valuation; extension of valuation; prime ideal factorization
UR - http://eudml.org/doc/294325
ER -
References
top- Cohen S. D., Movahhedi A., Salinier A., 10.1112/S0025579300015801, Mathematika 47 (2000), no. 1–2, 173–196. MR1924496DOI10.1112/S0025579300015801
- Deajim A., El Fadil L., 10.1515/ms-2017-0285, Math. Slovaca 69 (2019), no. 5, 1009–1022. MR4017386DOI10.1515/ms-2017-0285
- Dedekind R., Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen, Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen 23 (1878), 3–38 (German).
- Guàrdia J., Montes J., Nart E., 10.1090/S0002-9947-2011-05442-5, Trans. Amer. Math. Soc. 364 (2012), no. 1, 361–416. MR2833586DOI10.1090/S0002-9947-2011-05442-5
- Hensel K., Untersuchung der Fundamentalgleichung einer Gattung für eine reelle Primzahl als Modul und Bestimmung der Theiler ihrer Discriminante, J. Reine Angew. Math. 113 (1894), 61–83 (German). MR1580345
- Khanduja S. K., Kumar M., 10.1142/S1793042108001833, Int. J. Number Theory 4 (2008), no. 6, 1019–1025. MR2483309DOI10.1142/S1793042108001833
- Khanduja S. K., Kumar M., 10.1007/s00229-009-0320-1, Manuscripta Math. 131 (2010), no. 3–4, 323–334. MR2592083DOI10.1007/s00229-009-0320-1
- Khanduja S. K., Kumar M., 10.1016/j.jpaa.2013.11.014, J. Pure Appl. Algebra 218 (2014), no. 7, 1206–1218. MR3168492DOI10.1016/j.jpaa.2013.11.014
- Neukirch J., 10.1007/978-3-662-03983-0, Grundlehren der Mathematischen Wissenschaften, 322, Springer, Berlin, 1999. MR1697859DOI10.1007/978-3-662-03983-0
- Ore Ö., 10.1007/BF01459087, Math. Ann. 99 (1928), no. 1, 84–117 (German). MR1512440DOI10.1007/BF01459087
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.