A nonmonotone line search for the LBFGS method in parabolic optimal control problems
Omid Solaymani Fard; Farhad Sarani; Akbar Hashemi Borzabadi; Hadi Nosratipour
Kybernetika (2019)
- Volume: 55, Issue: 1, page 183-202
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topSolaymani Fard, Omid, et al. "A nonmonotone line search for the LBFGS method in parabolic optimal control problems." Kybernetika 55.1 (2019): 183-202. <http://eudml.org/doc/294329>.
@article{SolaymaniFard2019,
abstract = {In this paper a nonmonotone limited memory BFGS (NLBFGS) method is applied for approximately solving optimal control problems (OCPs) governed by one-dimensional parabolic partial differential equations. A discretized optimal control problem is obtained by using piecewise linear finite element and well-known backward Euler methods. Afterwards, regarding the implicit function theorem, the optimal control problem is transformed into an unconstrained nonlinear optimization problem (UNOP). Finally the obtained UNOP is solved by utilizing the NLBFGS method. In comparison to other existing methods, the NLBFGS method shows a significant improvement especially for nonlinear and ill-posed control problems.},
author = {Solaymani Fard, Omid, Sarani, Farhad, Hashemi Borzabadi, Akbar, Nosratipour, Hadi},
journal = {Kybernetika},
keywords = {optimal control; parabolic partial differential equations; backward Euler method; nonmonotone LBFGS method},
language = {eng},
number = {1},
pages = {183-202},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A nonmonotone line search for the LBFGS method in parabolic optimal control problems},
url = {http://eudml.org/doc/294329},
volume = {55},
year = {2019},
}
TY - JOUR
AU - Solaymani Fard, Omid
AU - Sarani, Farhad
AU - Hashemi Borzabadi, Akbar
AU - Nosratipour, Hadi
TI - A nonmonotone line search for the LBFGS method in parabolic optimal control problems
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 1
SP - 183
EP - 202
AB - In this paper a nonmonotone limited memory BFGS (NLBFGS) method is applied for approximately solving optimal control problems (OCPs) governed by one-dimensional parabolic partial differential equations. A discretized optimal control problem is obtained by using piecewise linear finite element and well-known backward Euler methods. Afterwards, regarding the implicit function theorem, the optimal control problem is transformed into an unconstrained nonlinear optimization problem (UNOP). Finally the obtained UNOP is solved by utilizing the NLBFGS method. In comparison to other existing methods, the NLBFGS method shows a significant improvement especially for nonlinear and ill-posed control problems.
LA - eng
KW - optimal control; parabolic partial differential equations; backward Euler method; nonmonotone LBFGS method
UR - http://eudml.org/doc/294329
ER -
References
top- Albrecher, H., Runggaldier, W. J., Schachermayer, W., 10.1515/9783110213140, Radon series on computational and applied mathematics, Walter de Gruyter, 2009. MR2605639DOI10.1515/9783110213140
- Amini, K., Ahookhosh, M., Nosratipour, H., 10.1007/s11075-013-9723-x, Numer. Algor. 66 (2014), 49-78. MR3197357DOI10.1007/s11075-013-9723-x
- Aniţa, S., Arnautu, V., Capasso, V., An Introduction to Optimal Control Problems in Life Sciences and Economics: From Mathematical Models to Numerical Simulation with MATLAB., Birkhäuser, Boston 2011. MR2761466
- Bazaraa, M. S., Sherali, H. D., Shetty, C. M., 10.1002/0471787779, Wiley, New York 2006. Zbl1140.90040MR2218478DOI10.1002/0471787779
- Borzi, A., Schulz, V., 10.1137/1.9781611972054, SIAM, 2012. MR2895881DOI10.1137/1.9781611972054
- Brezzi, F., Fortin, M., 10.1007/978-1-4612-3172-1, Springer, New York 2012. MR1115205DOI10.1007/978-1-4612-3172-1
- Cantrell, S., Cosner, C., Ruan, S., 10.1201/9781420059861, CRC Mathematical and Computational Biology, CRC Press 2009. MR2664165DOI10.1201/9781420059861
- Chang, R. Y., Yang, S. Y., 10.1080/00207178608933572, International Journal of Control 43 (1986), 1785-1802. MR0838620DOI10.1080/00207178608933572
- Christofides, P., Armaou, A., Lou, Y., Varshney, A., 10.1007/978-0-8176-4793-3, Birkhäuser, Boston 2008. MR2489170DOI10.1007/978-0-8176-4793-3
- Klerk, E. De, Roos, C., Terlaky, T., Nonlinear Optimization., University Of Waterloo, Waterloo 2005.
- Griva, I., Nash, S. G., Sofer, A., 10.1137/1.9780898717730, SIAM, Philadelphia 2009. MR2472514DOI10.1137/1.9780898717730
- Haslinger, J., Neittaanmäki, P., Finite Element Approximation for Optimal Shape, Material and Topology Design., Wiley, 1996. MR1419500
- Heinkenschloss, M., Numerical Solution of Implicitly Constrained Optimization Problems., CAAM Technical Report TR08-05, Rice University (2008).
- Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S., Optimization with PDE Constraints., Springer, Netherlands 2008. MR2516528
- Horng, I. R., Chou, J. H., 10.1080/00207178508933359, Int. J. Control 42 (1985), 233-241. MR0802185DOI10.1080/00207178508933359
- Hu, W. W., Approximation and Control of the Boussinesq Equations with Application to Control of Energy Efficient Building Systems., Ph.D. Thesis, Department of Mathematics, Virginia Tech. 2012.
- Ji, Y., Li, Y., Zhang, K., Zhan, X., 10.1016/j.cam.2009.09.011, J. Comput. Appl. Math. 233 (2010), 1746-1754. MR2564012DOI10.1016/j.cam.2009.09.011
- Kunisch, K., Volkwein, S., 10.1023/a:1021732508059, J. Optim. Theory Appl. 102 (1999), 345-371. MR1706822DOI10.1023/a:1021732508059
- Lions, J. L., 10.1007/978-3-642-65024-6, Springer-Verlag, 1971. MR0271512DOI10.1007/978-3-642-65024-6
- Liu, D., Nocedal, J., 10.1007/bf01589116, Math. Program. 45 (1989), 503-528. MR1038245DOI10.1007/bf01589116
- Merino, P., 10.1007/s10589-015-9790-0, Comput. Optim. Appl. 63 (2016), 793-824. MR3465457DOI10.1007/s10589-015-9790-0
- Meyer, C., Philip, P., Tröltzsch, F., 10.1137/040617753, SIAM J. Control Optim. 45 (2006), 699-721. MR2246096DOI10.1137/040617753
- Noack, B. R., Morzynski, M., Tadmor, G., 10.1007/978-3-7091-0758-4, Springer, Vienna 2011. DOI10.1007/978-3-7091-0758-4
- Nocedal, J., 10.1090/s0025-5718-1980-0572855-7, Math. Comput. 35 (1980) 773-782. Zbl0464.65037MR0572855DOI10.1090/s0025-5718-1980-0572855-7
- Nocedal, J., Wright, S., 10.1007/b98874, Springer, New York 2006. Zbl1104.65059MR2244940DOI10.1007/b98874
- Nosratipour, H., Borzabadi, A. H., Fard, O. S., 10.1080/00207160.2017.1343472, Int. J. Comput. Math. 95 (2018) 1858-1873. MR3817213DOI10.1080/00207160.2017.1343472
- Nosratipour, H., Borzabadi, A. H., Fard, O. S., 10.1007/s10092-017-0226-3, Calcolo 54 (2017) 1217-1242. MR3735813DOI10.1007/s10092-017-0226-3
- Nosratipour, H., Fard, O. S., Borzabadi, A. H., 10.1080/02331934.2017.1287702, Optimization 66 (2017) 641-655. MR3610318DOI10.1080/02331934.2017.1287702
- Rad, J. A., Kazem, S., Parand, K., 10.1016/j.cnsns.2013.01.007, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 2559-2567. MR3168052DOI10.1016/j.cnsns.2013.01.007
- Razzaghi, M., Arabshahi, A., 10.1080/00207728908910200, Int. J. Systems Sci. 20 (1989), 1141-1148. MR0988803DOI10.1080/00207728908910200
- Sabeh, Z., Shamsi, M., Dehghan, M., 10.1002/mma.3779, Math. Methods Appl. Sci. 39 (2016), 3350-3360. MR3521259DOI10.1002/mma.3779
- Strang, G., Fix, G., An Analysis of the Finite Element Method., Wellesley-Cambridge Press, 2008. Zbl0356.65096MR2743037
- Tröltzsch, F., 10.1090/gsm/112, Graduate studies in mathematics, American Mathematical Society, 2010. MR2583281DOI10.1090/gsm/112
- Tröltzsch, F., Volkwein, S., 10.1051/cocv:2001127, ESAIM: COCV 6 (2001), 649-674. MR1872392DOI10.1051/cocv:2001127
- Wang, F. S., Jian, J. B., 10.1080/01630563.2013.873454, Numer. Funct. Anal. Optim. 35 (2014), 487-508. MR3177067DOI10.1080/01630563.2013.873454
- Yılmaz, F., Karasözen, B., 10.1016/j.cam.2011.01.002, J. Comput. Appl. Math. 235 (2011), 4839-4850. MR2805724DOI10.1016/j.cam.2011.01.002
- Zhang, H., Hager, W. W., 10.1137/s1052623403428208, SIAM J. Optim. 14 (2004), 1043-1056. MR2112963DOI10.1137/s1052623403428208
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.