A nonmonotone line search for the LBFGS method in parabolic optimal control problems

Omid Solaymani Fard; Farhad Sarani; Akbar Hashemi Borzabadi; Hadi Nosratipour

Kybernetika (2019)

  • Volume: 55, Issue: 1, page 183-202
  • ISSN: 0023-5954

Abstract

top
In this paper a nonmonotone limited memory BFGS (NLBFGS) method is applied for approximately solving optimal control problems (OCPs) governed by one-dimensional parabolic partial differential equations. A discretized optimal control problem is obtained by using piecewise linear finite element and well-known backward Euler methods. Afterwards, regarding the implicit function theorem, the optimal control problem is transformed into an unconstrained nonlinear optimization problem (UNOP). Finally the obtained UNOP is solved by utilizing the NLBFGS method. In comparison to other existing methods, the NLBFGS method shows a significant improvement especially for nonlinear and ill-posed control problems.

How to cite

top

Solaymani Fard, Omid, et al. "A nonmonotone line search for the LBFGS method in parabolic optimal control problems." Kybernetika 55.1 (2019): 183-202. <http://eudml.org/doc/294329>.

@article{SolaymaniFard2019,
abstract = {In this paper a nonmonotone limited memory BFGS (NLBFGS) method is applied for approximately solving optimal control problems (OCPs) governed by one-dimensional parabolic partial differential equations. A discretized optimal control problem is obtained by using piecewise linear finite element and well-known backward Euler methods. Afterwards, regarding the implicit function theorem, the optimal control problem is transformed into an unconstrained nonlinear optimization problem (UNOP). Finally the obtained UNOP is solved by utilizing the NLBFGS method. In comparison to other existing methods, the NLBFGS method shows a significant improvement especially for nonlinear and ill-posed control problems.},
author = {Solaymani Fard, Omid, Sarani, Farhad, Hashemi Borzabadi, Akbar, Nosratipour, Hadi},
journal = {Kybernetika},
keywords = {optimal control; parabolic partial differential equations; backward Euler method; nonmonotone LBFGS method},
language = {eng},
number = {1},
pages = {183-202},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A nonmonotone line search for the LBFGS method in parabolic optimal control problems},
url = {http://eudml.org/doc/294329},
volume = {55},
year = {2019},
}

TY - JOUR
AU - Solaymani Fard, Omid
AU - Sarani, Farhad
AU - Hashemi Borzabadi, Akbar
AU - Nosratipour, Hadi
TI - A nonmonotone line search for the LBFGS method in parabolic optimal control problems
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 1
SP - 183
EP - 202
AB - In this paper a nonmonotone limited memory BFGS (NLBFGS) method is applied for approximately solving optimal control problems (OCPs) governed by one-dimensional parabolic partial differential equations. A discretized optimal control problem is obtained by using piecewise linear finite element and well-known backward Euler methods. Afterwards, regarding the implicit function theorem, the optimal control problem is transformed into an unconstrained nonlinear optimization problem (UNOP). Finally the obtained UNOP is solved by utilizing the NLBFGS method. In comparison to other existing methods, the NLBFGS method shows a significant improvement especially for nonlinear and ill-posed control problems.
LA - eng
KW - optimal control; parabolic partial differential equations; backward Euler method; nonmonotone LBFGS method
UR - http://eudml.org/doc/294329
ER -

References

top
  1. Albrecher, H., Runggaldier, W. J., Schachermayer, W., 10.1515/9783110213140, Radon series on computational and applied mathematics, Walter de Gruyter, 2009. MR2605639DOI10.1515/9783110213140
  2. Amini, K., Ahookhosh, M., Nosratipour, H., 10.1007/s11075-013-9723-x, Numer. Algor. 66 (2014), 49-78. MR3197357DOI10.1007/s11075-013-9723-x
  3. Aniţa, S., Arnautu, V., Capasso, V., An Introduction to Optimal Control Problems in Life Sciences and Economics: From Mathematical Models to Numerical Simulation with MATLAB., Birkhäuser, Boston 2011. MR2761466
  4. Bazaraa, M. S., Sherali, H. D., Shetty, C. M., 10.1002/0471787779, Wiley, New York 2006. Zbl1140.90040MR2218478DOI10.1002/0471787779
  5. Borzi, A., Schulz, V., 10.1137/1.9781611972054, SIAM, 2012. MR2895881DOI10.1137/1.9781611972054
  6. Brezzi, F., Fortin, M., 10.1007/978-1-4612-3172-1, Springer, New York 2012. MR1115205DOI10.1007/978-1-4612-3172-1
  7. Cantrell, S., Cosner, C., Ruan, S., 10.1201/9781420059861, CRC Mathematical and Computational Biology, CRC Press 2009. MR2664165DOI10.1201/9781420059861
  8. Chang, R. Y., Yang, S. Y., 10.1080/00207178608933572, International Journal of Control 43 (1986), 1785-1802. MR0838620DOI10.1080/00207178608933572
  9. Christofides, P., Armaou, A., Lou, Y., Varshney, A., 10.1007/978-0-8176-4793-3, Birkhäuser, Boston 2008. MR2489170DOI10.1007/978-0-8176-4793-3
  10. Klerk, E. De, Roos, C., Terlaky, T., Nonlinear Optimization., University Of Waterloo, Waterloo 2005. 
  11. Griva, I., Nash, S. G., Sofer, A., 10.1137/1.9780898717730, SIAM, Philadelphia 2009. MR2472514DOI10.1137/1.9780898717730
  12. Haslinger, J., Neittaanmäki, P., Finite Element Approximation for Optimal Shape, Material and Topology Design., Wiley, 1996. MR1419500
  13. Heinkenschloss, M., Numerical Solution of Implicitly Constrained Optimization Problems., CAAM Technical Report TR08-05, Rice University (2008). 
  14. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S., Optimization with PDE Constraints., Springer, Netherlands 2008. MR2516528
  15. Horng, I. R., Chou, J. H., 10.1080/00207178508933359, Int. J. Control 42 (1985), 233-241. MR0802185DOI10.1080/00207178508933359
  16. Hu, W. W., Approximation and Control of the Boussinesq Equations with Application to Control of Energy Efficient Building Systems., Ph.D. Thesis, Department of Mathematics, Virginia Tech. 2012. 
  17. Ji, Y., Li, Y., Zhang, K., Zhan, X., 10.1016/j.cam.2009.09.011, J. Comput. Appl. Math. 233 (2010), 1746-1754. MR2564012DOI10.1016/j.cam.2009.09.011
  18. Kunisch, K., Volkwein, S., 10.1023/a:1021732508059, J. Optim. Theory Appl. 102 (1999), 345-371. MR1706822DOI10.1023/a:1021732508059
  19. Lions, J. L., 10.1007/978-3-642-65024-6, Springer-Verlag, 1971. MR0271512DOI10.1007/978-3-642-65024-6
  20. Liu, D., Nocedal, J., 10.1007/bf01589116, Math. Program. 45 (1989), 503-528. MR1038245DOI10.1007/bf01589116
  21. Merino, P., 10.1007/s10589-015-9790-0, Comput. Optim. Appl. 63 (2016), 793-824. MR3465457DOI10.1007/s10589-015-9790-0
  22. Meyer, C., Philip, P., Tröltzsch, F., 10.1137/040617753, SIAM J. Control Optim. 45 (2006), 699-721. MR2246096DOI10.1137/040617753
  23. Noack, B. R., Morzynski, M., Tadmor, G., 10.1007/978-3-7091-0758-4, Springer, Vienna 2011. DOI10.1007/978-3-7091-0758-4
  24. Nocedal, J., 10.1090/s0025-5718-1980-0572855-7, Math. Comput. 35 (1980) 773-782. Zbl0464.65037MR0572855DOI10.1090/s0025-5718-1980-0572855-7
  25. Nocedal, J., Wright, S., 10.1007/b98874, Springer, New York 2006. Zbl1104.65059MR2244940DOI10.1007/b98874
  26. Nosratipour, H., Borzabadi, A. H., Fard, O. S., 10.1080/00207160.2017.1343472, Int. J. Comput. Math. 95 (2018) 1858-1873. MR3817213DOI10.1080/00207160.2017.1343472
  27. Nosratipour, H., Borzabadi, A. H., Fard, O. S., 10.1007/s10092-017-0226-3, Calcolo 54 (2017) 1217-1242. MR3735813DOI10.1007/s10092-017-0226-3
  28. Nosratipour, H., Fard, O. S., Borzabadi, A. H., 10.1080/02331934.2017.1287702, Optimization 66 (2017) 641-655. MR3610318DOI10.1080/02331934.2017.1287702
  29. Rad, J. A., Kazem, S., Parand, K., 10.1016/j.cnsns.2013.01.007, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 2559-2567. MR3168052DOI10.1016/j.cnsns.2013.01.007
  30. Razzaghi, M., Arabshahi, A., 10.1080/00207728908910200, Int. J. Systems Sci. 20 (1989), 1141-1148. MR0988803DOI10.1080/00207728908910200
  31. Sabeh, Z., Shamsi, M., Dehghan, M., 10.1002/mma.3779, Math. Methods Appl. Sci. 39 (2016), 3350-3360. MR3521259DOI10.1002/mma.3779
  32. Strang, G., Fix, G., An Analysis of the Finite Element Method., Wellesley-Cambridge Press, 2008. Zbl0356.65096MR2743037
  33. Tröltzsch, F., 10.1090/gsm/112, Graduate studies in mathematics, American Mathematical Society, 2010. MR2583281DOI10.1090/gsm/112
  34. Tröltzsch, F., Volkwein, S., 10.1051/cocv:2001127, ESAIM: COCV 6 (2001), 649-674. MR1872392DOI10.1051/cocv:2001127
  35. Wang, F. S., Jian, J. B., 10.1080/01630563.2013.873454, Numer. Funct. Anal. Optim. 35 (2014), 487-508. MR3177067DOI10.1080/01630563.2013.873454
  36. Yılmaz, F., Karasözen, B., 10.1016/j.cam.2011.01.002, J. Comput. Appl. Math. 235 (2011), 4839-4850. MR2805724DOI10.1016/j.cam.2011.01.002
  37. Zhang, H., Hager, W. W., 10.1137/s1052623403428208, SIAM J. Optim. 14 (2004), 1043-1056. MR2112963DOI10.1137/s1052623403428208

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.