Tolerances on powers of a finite algebra
Mathematica Bohemica (1992)
- Volume: 117, Issue: 3, page 299-304
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topDuda, Jaromír. "Tolerances on powers of a finite algebra." Mathematica Bohemica 117.3 (1992): 299-304. <http://eudml.org/doc/29433>.
@article{Duda1992,
abstract = {It is shown that any power $A^n, n\ge 2$, of a finite $k$-element algebra $A, k\ge 2$, has factorable tolerances whenever the power $A^\{4k^2-3k\}$ has the same property.},
author = {Duda, Jaromír},
journal = {Mathematica Bohemica},
keywords = {factorable tolerance; powers of finite algebras; finite algebra; power; factorable tolerance; powers of finite algebras},
language = {eng},
number = {3},
pages = {299-304},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Tolerances on powers of a finite algebra},
url = {http://eudml.org/doc/29433},
volume = {117},
year = {1992},
}
TY - JOUR
AU - Duda, Jaromír
TI - Tolerances on powers of a finite algebra
JO - Mathematica Bohemica
PY - 1992
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 117
IS - 3
SP - 299
EP - 304
AB - It is shown that any power $A^n, n\ge 2$, of a finite $k$-element algebra $A, k\ge 2$, has factorable tolerances whenever the power $A^{4k^2-3k}$ has the same property.
LA - eng
KW - factorable tolerance; powers of finite algebras; finite algebra; power; factorable tolerance; powers of finite algebras
UR - http://eudml.org/doc/29433
ER -
References
top- S. Burris R. Willard, 10.1090/S0002-9939-1987-0908642-5, Proc. Amer. Math. Soc. 101 (1987), 427-430. (1987) MR0908642DOI10.1090/S0002-9939-1987-0908642-5
- I. Chajda, Lattices of compatible relations, Arch. Math. Brno 13 (1977), 89-96. (1977) Zbl0372.08002MR0463081
- R. Willard, 10.1007/BF01211839, Algebra Univ. 26 (1989), 332-340. (1989) Zbl0686.08008MR1044852DOI10.1007/BF01211839
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.