Positive periodic solutions of a neutral functional differential equation with multiple delays
Mathematica Bohemica (2018)
- Volume: 143, Issue: 1, page 11-24
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topLi, Yongxiang, and Liu, Ailan. "Positive periodic solutions of a neutral functional differential equation with multiple delays." Mathematica Bohemica 143.1 (2018): 11-24. <http://eudml.org/doc/294331>.
@article{Li2018,
abstract = {This paper deals with the existence of positive $\omega $-periodic solutions for the neutral functional differential equation with multiple delays \[(u(t)-cu(t-\delta ))^\{\prime \}+a(t) u(t)=f(t, u(t-\tau \_1), \cdots , u(t-\tau \_n)).\]
The essential inequality conditions on the existence of positive periodic solutions are obtained. These inequality conditions concern with the relations of $c$ and the coefficient function $a(t)$, and the nonlinearity $f(t, x_1,\cdots , x_n)$. Our discussion is based on the perturbation method of positive operator and fixed point index theory in cones.},
author = {Li, Yongxiang, Liu, Ailan},
journal = {Mathematica Bohemica},
keywords = {neutral delay differential equation; positive periodic solution; cone; fixed point index},
language = {eng},
number = {1},
pages = {11-24},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Positive periodic solutions of a neutral functional differential equation with multiple delays},
url = {http://eudml.org/doc/294331},
volume = {143},
year = {2018},
}
TY - JOUR
AU - Li, Yongxiang
AU - Liu, Ailan
TI - Positive periodic solutions of a neutral functional differential equation with multiple delays
JO - Mathematica Bohemica
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 143
IS - 1
SP - 11
EP - 24
AB - This paper deals with the existence of positive $\omega $-periodic solutions for the neutral functional differential equation with multiple delays \[(u(t)-cu(t-\delta ))^{\prime }+a(t) u(t)=f(t, u(t-\tau _1), \cdots , u(t-\tau _n)).\]
The essential inequality conditions on the existence of positive periodic solutions are obtained. These inequality conditions concern with the relations of $c$ and the coefficient function $a(t)$, and the nonlinearity $f(t, x_1,\cdots , x_n)$. Our discussion is based on the perturbation method of positive operator and fixed point index theory in cones.
LA - eng
KW - neutral delay differential equation; positive periodic solution; cone; fixed point index
UR - http://eudml.org/doc/294331
ER -
References
top- Deimling, K., 10.1007/978-3-662-00547-7, Springer, Berlin (1985). (1985) Zbl0559.47040MR0787404DOI10.1007/978-3-662-00547-7
- Freedman, H. I., Wu, J., 10.1137/0523035, SIAM J. Math. Anal. 23 (1992), 689-701. (1992) Zbl0764.92016MR1158828DOI10.1137/0523035
- Guo, D., Lakshmikantham, V., Nonlinear Problems in Abstract Cones, Notes and Reports in Mathematics in Science and Engineering 5. Academic Press, Boston (1988). (1988) Zbl0661.47045MR0959889
- Hale, J. K., 10.1007/978-1-4612-9892-2, Applied Mathematical Sciences. Vol. 3. Springer, New York (1977). (1977) Zbl0352.34001MR0508721DOI10.1007/978-1-4612-9892-2
- Hatvani, L., Krisztin, T., 10.1016/0022-0396(92)90080-7, J. Differ. Equations 97 (1992), 1-15. (1992) Zbl0758.34054MR1161308DOI10.1016/0022-0396(92)90080-7
- Kang, S., Zhang, G., 10.1016/j.aml.2004.07.018, Appl. Math. Lett. 18 (2005), 101-107. (2005) Zbl1075.34064MR2121560DOI10.1016/j.aml.2004.07.018
- Kuang, Y., Delay Differential Equations with Applications in Population Dynamics, Mathematics in Science and Engineering 191. Academic Press, Boston (1993). (1993) Zbl0777.34002MR1218880
- Luo, Y., Wang, W., Shen, J., 10.1016/j.aml.2007.07.009, Appl. Math. Lett. 21 (2008), 581-587. (2008) Zbl1149.34040MR2412382DOI10.1016/j.aml.2007.07.009
- Mallet-Paret, J., Nussbaum, R. D., 10.1007/BF01790539, Ann. Math. Pure Appl. (4) 145 (1986), 33-128. (1986) Zbl0617.34071MR0886709DOI10.1007/BF01790539
- Serra, E., 10.1016/0362-546X(91)90217-O, Nonlinear Anal., Theory Methods Appl. 17 (1991), 139-151. (1991) Zbl0735.34066MR1118073DOI10.1016/0362-546X(91)90217-O
- Wan, A., Jiang, D., 10.2206/kyushujm.56.193, Kyushu J. Math. 56 (2002), 193-202. (2002) Zbl1012.34068MR1898353DOI10.2206/kyushujm.56.193
- Wan, A., Jiang, D., Xu, X., 10.1016/S0898-1221(04)90120-4, Comput. Math. Appl. 47 (2004), 1257-1262. (2004) Zbl1073.34082MR2070981DOI10.1016/S0898-1221(04)90120-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.